Hyperbolic law of cosines

Last updated

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]

Contents

History

Describing relations of hyperbolic geometry, Franz Taurinus showed in 1826 [4] that the spherical law of cosines can be related to spheres of imaginary radius, thus he arrived at the hyperbolic law of cosines in the form: [5]

which was also shown by Nikolai Lobachevsky (1830): [6]

Ferdinand Minding gave it in relation to surfaces of constant negative curvature: [7]

as did Delfino Codazzi in 1857: [8]

The relation to relativity using rapidity was shown by Arnold Sommerfeld in 1909 [9] and Vladimir Varićak in 1910. [10]

Hyperbolic laws of cosines

Hyperbolic triangle ABC.svg

Take a hyperbolic plane whose Gaussian curvature is . Given a hyperbolic triangle with angles and side lengths , , and , the following two rules hold. The first is an analogue of Euclidean law of cosines, expressing the length of one side in terms of the other two and the angle between the latter:

(1)

The second law has no Euclidean analogue, since it expresses the fact that lengths of sides of a hyperbolic triangle are determined by the interior angles:

Houzel indicates that the hyperbolic law of cosines implies the angle of parallelism in the case of an ideal hyperbolic triangle: [11]

When that is when the vertex A is rejected to infinity and the sides BA and CA are "parallel", the first member equals 1; let us suppose in addition that so that and The angle at B takes a value β given by this angle was later called "angle of parallelism" and Lobachevsky noted it by "F(a)" or "Π(a)".

Hyperbolic law of Haversines

In cases where is small, and being solved for, the numerical precision of the standard form of the hyperbolic law of cosines will drop due to rounding errors, for exactly the same reason it does in the Spherical law of cosines. The hyperbolic version of the law of haversines can prove useful in this case:

Relativistic velocity addition via hyperbolic law of cosines

Setting in ( 1 ), and by using hyperbolic identities in terms of the hyperbolic tangent, the hyperbolic law of cosines can be written:

(2)

In comparison, the velocity addition formulas of special relativity for the x and y-directions as well as under an arbitrary angle , where v is the relative velocity between two inertial frames, u the velocity of another object or frame, and c the speed of light, is given by [2]

It turns out that this result corresponds to the hyperbolic law of cosines - by identifying with relativistic rapidities the equations in ( 2 ) assume the form: [10] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths Letting be the semiperimeter of the triangle, the area is

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle radians onto the line through the angles . Among these formulas are the following:

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Hyperbolic triangle</span> Triangle in hyperbolic geometry

In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices.

<span class="mw-page-title-main">Angle of parallelism</span> An angle in certain right triangles in the hyperbolic plane

In hyperbolic geometry, angle of parallelism is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism.

<span class="mw-page-title-main">Hyperbolic motion (relativity)</span> Motion of an object with constant proper acceleration in special relativity.

Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.

Franz Adolph Taurinus was a German mathematician who is known for his work on non-Euclidean geometry.

<span class="mw-page-title-main">Lambert quadrilateral</span>

In geometry, a Lambert quadrilateral, is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest since if it could be shown to be a right angle, then the Euclidean parallel postulate could be proved as a theorem. It is now known that the type of the fourth angle depends upon the geometry in which the quadrilateral exists. In hyperbolic geometry the fourth angle is acute, in Euclidean geometry it is a right angle and in elliptic geometry it is an obtuse angle.

<span class="mw-page-title-main">Inverse hyperbolic functions</span> Mathematical functions

In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

Rapidity is a measure for relativistic velocity. For one-dimensional motion, rapidities are additive. However, velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Proper velocity</span> Ratio in relativity

In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References

Bibliography

  • Anderson, James W. (2005). Hyperbolic Geometry (2nd ed.). London: Springer. ISBN   1-85233-934-9.
  • Barrett, J. F. (2019) [2006]. The Hyperbolic Theory of Relativity. arXiv: 1102.0462 .
  • Bonola, R. (1912). Non-Euclidean Geometry: A Critical and Historical Study of Its Development. Chicago: Open Court.
  • Codazzi, D. (1857). "Intorno alle superficie le quali hanno costante il prodotto de due raggi di curvatura" [About surfaces which have constant the product of two radii of curvature]. Ann. Sci. Mat. Fis. (in Italian). 8: 351–354.
  • Gray, J. (1979). "Non-Euclidean Geometry: A Re-interpretation". Historia Mathematica. 6 (3): 236–258. doi: 10.1016/0315-0860(79)90124-1 .
  • Houzel, Christian (1992). "The Birth of Non-Euclidean Geometry". In Boi, L.; Flament, D.; Salanskis, J. M. (eds.). 1830–1930: A Century of Geometry: Epistemology, History and Mathematics. Lecture Notes in Physics. Vol. 402. Springer-Verlag. pp. 3–21. ISBN   3-540-55408-4.
  • Lobachevsky, N. (1898) [1830]. "Über die Anfangsgründe der Geometrie" [On the beginnings of geometry]. In Engel, F.; Stäckel, P. (eds.). Zwei geometrische Abhandlungen [Two Geometric Treatises] (in German). Leipzig: Teubner. pp.  21–65.
  • Minding, F. (1840). "Beiträge zur Theorie der kürzesten Linien auf krummen Flächen". Journal für die reine und angewandte Mathematik. 20: 324.
  • Pauli, Wolfgang (1921). "Die Relativitätstheorie" [The Theory of Relativity]. Encyclopädie der mathematischen Wissenschaften (in German). 5 (2): 539–776.
  • Pauli, Wolfgang (1981) [1921]. "Theory of Relativity". Fundamental Theories of Physics. 165. Dover Publications. ISBN   0-486-64152-X.
  • Reid, Miles; Szendröi, Balázs (2005). Geometry and Topology. Cambridge University Press. §3.10 Hyperbolic triangles and trig. ISBN   0-521-61325-6. MR   2194744.
  • Reiman, István (1999). Geometria és határterületei (in Hungarian). Szalay Könyvkiadó és Kereskedőház Kft. ISBN   978-963-237-012-5.
  • Sommerfeld, A. (1909). "Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie" [ On the Composition of Velocities in the Theory of Relativity ]. Verh. Dtsch. Phys. Ges. (in German). 21: 577–582.
  • Taurinus, Franz Adolph (1826). Geometriae prima elementa. Recensuit et novas observationes adjecit [The first elements of geometry. Reviewed and new added observations] (in Latin). Köln: Bachem. p. 66.
  • Varičak, Vladimir (1912). "Über die nichteuklidische Interpretation der Relativtheorie"  [ On the Non-Euclidean Interpretation of the Theory of Relativity ]. Jahresbericht der Deutschen Mathematiker-Vereinigung (in German). 21: 103–127.