Hyperbolic triangle

Last updated
A hyperbolic triangle embedded in a saddle-shaped surface Hyperbolic triangle.svg
A hyperbolic triangle embedded in a saddle-shaped surface

In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices.

Contents

Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane. Hence planar hyperbolic triangles also describe triangles possible in any higher dimension of hyperbolic spaces.

An order-7 triangular tiling has equilateral triangles with 2p/7 radian internal angles. Order-7 triangular tiling.svg
An order-7 triangular tiling has equilateral triangles with 2π/7 radian internal angles.

Definition

A hyperbolic triangle consists of three non-collinear points and the three segments between them. [1]

Properties

Hyperbolic triangles have some properties that are analogous to those of triangles in Euclidean geometry:

Hyperbolic triangles have some properties that are analogous to those of triangles in spherical or elliptic geometry:

Hyperbolic triangles have some properties that are the opposite of the properties of triangles in spherical or elliptic geometry:

Hyperbolic triangles also have some properties that are not found in other geometries:

Triangles with ideal vertices

Three ideal triangles in the Poincare disk model Ideal circles.svg
Three ideal triangles in the Poincaré disk model

The definition of a triangle can be generalized, permitting vertices on the ideal boundary of the plane while keeping the sides within the plane. If a pair of sides is limiting parallel (i.e. the distance between them approaches zero as they tend to the ideal point, but they do not intersect), then they end at an ideal vertex represented as an omega point .

Such a pair of sides may also be said to form an angle of zero.

A triangle with a zero angle is impossible in Euclidean geometry for straight sides lying on distinct lines. However, such zero angles are possible with tangent circles.

A triangle with one ideal vertex is called an omega triangle.

Special Triangles with ideal vertices are:

Triangle of parallelism

A triangle where one vertex is an ideal point, one angle is right: the third angle is the angle of parallelism for the length of the side between the right and the third angle.

Schweikart triangle

The triangle where two vertices are ideal points and the remaining angle is right, one of the first hyperbolic triangles (1818) described by Ferdinand Karl Schweikart.

Ideal triangle

The triangle where all vertices are ideal points, an ideal triangle is the largest possible triangle in hyperbolic geometry because of the zero sum of the angles.

Standardized Gaussian curvature

The relations among the angles and sides are analogous to those of spherical trigonometry; the length scale for both spherical geometry and hyperbolic geometry can for example be defined as the length of a side of an equilateral triangle with fixed angles.

The length scale is most convenient if the lengths are measured in terms of the absolute length (a special unit of length analogous to a relations between distances in spherical geometry). This choice for this length scale makes formulas simpler. [2]

In terms of the Poincaré half-plane model absolute length corresponds to the infinitesimal metric and in the Poincaré disk model to .

In terms of the (constant and negative) Gaussian curvature K of a hyperbolic plane, a unit of absolute length corresponds to a length of

.

In a hyperbolic triangle the sum of the angles A, B, C (respectively opposite to the side with the corresponding letter) is strictly less than a straight angle. The difference between the measure of a straight angle and the sum of the measures of a triangle's angles is called the defect of the triangle. The area of a hyperbolic triangle is equal to its defect multiplied by the square of R:

.

This theorem, first proven by Johann Heinrich Lambert, [3] is related to Girard's theorem in spherical geometry.

Trigonometry

In all the formulas stated below the sides a, b, and c must be measured in absolute length, a unit so that the Gaussian curvature K of the plane is −1. In other words, the quantity R in the paragraph above is supposed to be equal to 1.

Trigonometric formulas for hyperbolic triangles depend on the hyperbolic functions sinh, cosh, and tanh.

Trigonometry of right triangles

If C is a right angle then:

.
.
.

Relations between angles

We also have the following equations: [5]

Area

The area of a right angled triangle is:

The area for any other triangle is:

also

[ citation needed ] [6]

Angle of parallelism

The instance of an omega triangle with a right angle provides the configuration to examine the angle of parallelism in the triangle.

In this case angle B = 0, a = c = and , resulting in .

Equilateral triangle

The trigonometry formulas of right triangles also give the relations between the sides s and the angles A of an equilateral triangle (a triangle where all sides have the same length and all angles are equal).

The relations are:

General trigonometry

Whether C is a right angle or not, the following relationships hold: The hyperbolic law of cosines is as follows:

Its dual theorem is

There is also a law of sines:

and a four-parts formula:

which is derived in the same way as the analogue formula in spherical trigonometry.


See also

For hyperbolic trigonometry:

Related Research Articles

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,

<span class="mw-page-title-main">Law of tangents</span> Relates tangents of two angles of a triangle and the lengths of the opposing sides

In trigonometry, the law of tangents or tangent rule is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides.

<span class="mw-page-title-main">Spherical trigonometry</span> Geometry of figures on the surface of a sphere

Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle radians onto the line through the angles . Among these formulas are the following:

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Angle of parallelism</span> An angle in certain right triangles in the hyperbolic plane

In hyperbolic geometry, angle of parallelism is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism.

<span class="mw-page-title-main">Lambert quadrilateral</span>

In geometry, a Lambert quadrilateral, is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest since if it could be shown to be a right angle, then the Euclidean parallel postulate could be proved as a theorem. It is now known that the type of the fourth angle depends upon the geometry in which the quadrilateral exists. In hyperbolic geometry the fourth angle is acute, in Euclidean geometry it is a right angle and in elliptic geometry it is an obtuse angle.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

<span class="mw-page-title-main">Trigonometry</span> Area of geometry, about angles and lengths

Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios such as sine.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Mollweide's formula</span> Relation between sides and angles of a triangle

In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle.

Solution of triangles is the main trigonometric problem of finding the characteristics of a triangle, when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

In trigonometry, it is common to use mnemonics to help remember trigonometric identities and the relationships between the various trigonometric functions.

<span class="mw-page-title-main">Law of cotangents</span> Trigonometric identity relating the sides and angles of a triangle

In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles.

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.

References

  1. Stothers, Wilson (2000), Hyperbolic geometry, University of Glasgow , interactive instructional website
  2. Needham, Tristan (1998). Visual Complex Analysis. Oxford University Press. p. 270. ISBN   9780198534464.
  3. Ratcliffe, John (2006). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics. Vol. 149. Springer. p. 99. ISBN   9780387331973. That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786.
  4. Martin, George E. (1998). The foundations of geometry and the non-Euclidean plane (Corrected 4. print. ed.). New York, NY: Springer. p.  433. ISBN   0-387-90694-0.
  5. Smogorzhevski, A.S. Lobachevskian geometry. Moscow 1982: Mir Publishers. p. 63.{{cite book}}: CS1 maint: location (link)
  6. "Area of a right angled hyperbolic triangle as function of side lengths". Stack Exchange Mathematics. Retrieved 11 October 2015.

Further reading