Uses of trigonometry

Last updated
The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of trigonometric functions of those angles. STS-114 Steve Robinson on Canadarm2.jpg
The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of trigonometric functions of those angles.

Amongst the lay public of non-mathematicians and non-scientists, trigonometry is known chiefly for its application to measurement problems, yet is also often used in ways that are far more subtle, such as its place in the theory of music; still other uses are more technical, such as in number theory. The mathematical topics of Fourier series and Fourier transforms rely heavily on knowledge of trigonometric functions and find application in a number of areas, including statistics.

Contents

Thomas Paine's statement

In Chapter XI of The Age of Reason, the American revolutionary and Enlightenment thinker Thomas Paine wrote: [1]

The scientific principles that man employs to obtain the foreknowledge of an eclipse, or of any thing else relating to the motion of the heavenly bodies, are contained chiefly in that part of science that is called trigonometry, or the properties of a triangle, which, when applied to the study of the heavenly bodies, is called astronomy; when applied to direct the course of a ship on the ocean, it is called navigation; when applied to the construction of figures drawn by a ruler and compass, it is called geometry; when applied to the construction of plans of edifices, it is called architecture; when applied to the measurement of any portion of the surface of the earth, it is called land-surveying. In fine, it is the soul of science. It is an eternal truth: it contains the mathematical demonstration of which man speaks, and the extent of its uses are unknown.

History

Great Trigonometrical Survey

From 1802 until 1871, the Great Trigonometrical Survey was a project to survey the Indian subcontinent with high precision. Starting from the coastal baseline, mathematicians and geographers triangulated vast distances across the country. One of the key achievements was measuring the height of Himalayan mountains, and determining that Mount Everest is the highest point on Earth. [2]

Historical use for multiplication

For the 25 years preceding the invention of the logarithm in 1614, prosthaphaeresis was the only known generally applicable way of approximating products quickly. It used the identities for the trigonometric functions of sums and differences of angles in terms of the products of trigonometric functions of those angles. [3]

Some modern uses

Scientific fields that make use of trigonometry include:

acoustics, architecture, astronomy, cartography, civil engineering, geophysics, crystallography, electrical engineering, electronics, land surveying and geodesy, many physical sciences, mechanical engineering, machining, medical imaging, number theory, oceanography, optics, pharmacology, probability theory, seismology, statistics, and visual perception

That these fields involve trigonometry does not mean knowledge of trigonometry is needed in order to learn anything about them. It does mean that some things in these fields cannot be understood without trigonometry. For example, a professor of music may perhaps know nothing of mathematics, but would probably know that Pythagoras was the earliest known contributor to the mathematical theory of music.

In some of the fields of endeavor listed above it is easy to imagine how trigonometry could be used. For example, in navigation and land surveying, the occasions for the use of trigonometry are in at least some cases simple enough that they can be described in a beginning trigonometry textbook. In the case of music theory, the application of trigonometry is related to work begun by Pythagoras, who observed that the sounds made by plucking two strings of different lengths are consonant if both lengths are small integer multiples of a common length. [4] The resemblance between the shape of a vibrating string and the graph of the sine function is no mere coincidence. In oceanography, the resemblance between the shapes of some waves and the graph of the sine function is also not coincidental. In some other fields, among them climatology, biology, and economics, there are seasonal periodicities. The study of these often involves the periodic nature of the sine and cosine functions.

Fourier series

Many fields make use of trigonometry in more advanced ways than can be discussed in a single article. Often those involve what are called the Fourier series, after the 18th- and 19th-century French mathematician and physicist Joseph Fourier. Fourier series have a surprisingly diverse array of applications in many scientific fields, in particular in all of the phenomena involving seasonal periodicities mentioned above, and in wave motion, and hence in the study of radiation, of acoustics, of seismology, of modulation of radio waves in electronics, and of electric power engineering. [5]

A Fourier series is a sum of this form:

where each of the squares () is a different number, and one is adding infinitely many terms. Fourier used these for studying heat flow and diffusion (diffusion is the process whereby, when you drop a sugar cube into a gallon of water, the sugar gradually spreads through the water, a pollutant spreads through the air, or any dissolved substance spreads through any fluid).

Fourier series are also applicable to subjects whose connection with wave motion is far from obvious. One ubiquitous example is digital compression whereby images, audio and video data are compressed into a much smaller size which makes their transmission feasible over telephone, internet and broadcast networks. Another example, mentioned above, is diffusion. Among others are: the geometry of numbers, isoperimetric problems, recurrence of random walks, quadratic reciprocity, the central limit theorem, Heisenberg's inequality.

Fourier transforms

A more abstract concept than Fourier series is the idea of Fourier transform. Fourier transforms involve integrals rather than sums, and are used in a similarly diverse array of scientific fields. Many natural laws are expressed by relating rates of change of quantities to the quantities themselves. For example: The rate population change is sometimes jointly proportional to (1) the present population and (2) the amount by which the present population falls short of the carrying capacity. This kind of relationship is called a differential equation. If, given this information, one tries to express population as a function of time, one is trying to "solve" the differential equation. Fourier transforms may be used to convert some differential equations to algebraic equations for which methods of solving them are known. Fourier transforms have many uses. In almost any scientific context in which the words spectrum, harmonic, or resonance are encountered, Fourier transforms or Fourier series are nearby.

Statistics, including mathematical psychology

Intelligence quotients are sometimes held to be distributed according to a bell-shaped curve. [6] About 40% of the area under the curve is in the interval from 100 to 120; correspondingly, about 40% of the population scores between 100 and 120 on IQ tests. Nearly 9% of the area under the curve is in the interval from 120 to 140; correspondingly, about 9% of the population scores between 120 and 140 on IQ tests, etc. Similarly many other things are distributed according to the "bell-shaped curve", including measurement errors in many physical measurements. Why the ubiquity of the "bell-shaped curve"? There is a theoretical reason for this, and it involves Fourier transforms and hence trigonometric functions. That is one of a variety of applications of Fourier transforms to statistics.

Trigonometric functions are also applied when statisticians study seasonal periodicities, which are often represented by Fourier series.

Number theory

There is a hint of a connection between trigonometry and number theory. Loosely speaking, one could say that number theory deals with qualitative properties rather than quantitative properties of numbers.

Discard the ones that are not in lowest terms; keep only those that are in lowest terms:

Then bring in trigonometry:

The value of the sum is −1, because 42 has an odd number of prime factors and none of them is repeated: 42 = 2 × 3 × 7. (If there had been an even number of non-repeated factors then the sum would have been 1; if there had been any repeated prime factors (e.g., 60 = 2 × 2 × 3 × 5) then the sum would have been 0; the sum is the Möbius function evaluated at 42.) This hints at the possibility of applying Fourier analysis to number theory.

Solving non-trigonometric equations

Various types of equations can be solved using trigonometry.

For example, a linear difference equation or linear differential equation with constant coefficients has solutions expressed in terms of the eigenvalues of its characteristic equation; if some of the eigenvalues are complex, the complex terms can be replaced by trigonometric functions of real terms, showing that the dynamic variable exhibits oscillations.

Similarly, cubic equations with three real solutions have an algebraic solution that is unhelpful in that it contains cube roots of complex numbers; again an alternative solution exists in terms of trigonometric functions of real terms.

Related Research Articles

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

In mathematics, de Moivre's formula states that for any real number x and integer n it is the case that where i is the imaginary unit. The formula is named after Abraham de Moivre, although he never stated it in his works. The expression cos x + i sin x is sometimes abbreviated to cis x.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Chebyshev polynomials</span> Polynomial sequence

The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".

<span class="mw-page-title-main">Identity (mathematics)</span> Equation that is satisfied for all values of the variables

In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B produce the same value for all values of the variables within a certain domain of discourse. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol instead of =, the equals sign. Formally, an identity is a universally quantified equality.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Exact trigonometric values</span> Trigonometric values in terms of square roots and fractions

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform. The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.

The trigonometric functions for complex square matrices occur in solutions of second-order systems of differential equations. They are defined by the same Taylor series that hold for the trigonometric functions of complex numbers:

References

  1. Thomas, Paine (2004). The Age of Reason. Dover Publications. p. 52.
  2. "Triangles and Trigonometry". Mathigon. Retrieved 2019-02-06.
  3. Borschers, Brian. Prosthaphaeresis. Harvard.
  4. "Music and Mathematics: A Pythagorean Perspective". University of New York in Prague. Retrieved 2023-10-01.
  5. Hollingsworth, Matt. Applications of the Fourier Series (PDF). p. 1.
  6. "Measures of Intelligence". OpenStaxCollege. 2014-02-14.