Exsecant

Last updated
The exsecant and versine functions substitute for the expressions exsec x = sec x - 1 and vers x = 1 - sec x which appear frequently in certain applications. Exsecant and versine.png
The exsecant and versine functions substitute for the expressions exsecx = secx1 and versx = 1secx which appear frequently in certain applications.
The names exsecant, versine, chord, etc. can also be applied to line segments related to a circular arc. The length of each segment is the radius times the corresponding trigonometric function of the angle. Versine, chord, and exsecant as line segments.png
The names exsecant, versine, chord, etc. can also be applied to line segments related to a circular arc. The length of each segment is the radius times the corresponding trigonometric function of the angle.

The external secant function (exsecant, symbolized exsec) is a trigonometric function defined in terms of the secant function:

Contents

It was introduced in 1855 by American civil engineer Charles Haslett, who used it in conjunction with the existing versine function, for designing and measuring circular sections of railroad track. [2] It was adopted by surveyors and civil engineers in the United States for railroad and road design, and since the early 20th century has sometimes been briefly mentioned in American trigonometry textbooks and general-purpose engineering manuals. [3] For completeness, a few books also defined a coexsecant or excosecant function (symbolized coexsec or excsc), the exsecant of the complementary angle, [4] [5] though it was not used in practice. While the exsecant has occasionally found other applications, today it is obscure and mainly of historical interest. [6]

As a line segment, an external secant of a circle has one endpoint on the circumference, and then extends radially outward. The length of this segment is the radius of the circle times the trigonometric exsecant of the central angle between the segment's inner endpoint and the point of tangency for a line through the outer endpoint and tangent to the circle.

Etymology

The word secant comes from Latin for "to cut", and a general secant line "cuts" a circle, intersecting it twice; this concept dates to antiquity and can be found in Book 3 of Euclid's Elements, as used e.g. in the intersecting secants theorem. 18th century sources in Latin called any non-tangential line segment external to a circle with one endpoint on the circumference a secans exterior. [7]

The trigonometric secant, named by Thomas Fincke (1583), is more specifically based on a line segment with one endpoint at the center of a circle and the other endpoint outside the circle; the circle divides this segment into a radius and an external secant. The external secant segment was used by Galileo Galilei (1632) under the name secant. [8]

History and applications

In the 19th century, most railroad tracks were constructed out of arcs of circles, called simple curves. [9] Surveyors and civil engineers working for the railroad needed to make many repetitive trigonometrical calculations to measure and plan circular sections of track. In surveying, and more generally in practical geometry, tables of both "natural" trigonometric functions and their common logarithms were used, depending on the specific calculation. Using logarithms converts expensive multiplication of multi-digit numbers to cheaper addition, and logarithmic versions of trigonometric tables further saved labor by reducing the number of necessary table lookups. [10]

The external secant or external distance of a curved track section is the shortest distance between the track and the intersection of the tangent lines from the ends of the arc, which equals the radius times the trigonometric exsecant of half the central angle subtended by the arc, [11] By comparison, the versed sine of a curved track section is the furthest distance from the long chord (the line segment between endpoints) to the track [12] – cf. Sagitta – which equals the radius times the trigonometric versine of half the central angle, These are both natural quantities to measure or calculate when surveying circular arcs, which must subsequently be multiplied or divided by other quantities. Charles Haslett (1855) found that directly looking up the logarithm of the exsecant and versine saved significant effort and produced more accurate results compared to calculating the same quantity from values found in previously available trigonometric tables. [2] The same idea was adopted by other authors, such as Searles (1880). [13] By 1913 Haslett's approach was so widely adopted in the American railroad industry that, in that context, "tables of external secants and versed sines [were] more common than [were] tables of secants". [14]

In the late-19th and 20th century, railroads began using arcs of an Euler spiral as a track transition curve between straight or circular sections of differing curvature. These spiral curves can be approximately calculated using exsecants and versines. [14] [15]

Solving the same types of problems is required when surveying circular sections of canals [16] and roads, and the exsecant was still used in mid-20th century books about road surveying. [17]

The exsecant has sometimes been used for other applications, such as beam theory [18] and depth sounding with a wire. [19]

In recent years, the availability of calculators and computers has removed the need for trigonometric tables of specialized functions such as this one. [20] Exsecant is generally not directly built into calculators or computing environments (though it has sometimes been included in software libraries), [21] and calculations in general are much cheaper than in the past, no longer requiring tedious manual labor.

Catastrophic cancellation for small angles

Naïvely evaluating the expressions (versine) and (exsecant) is problematic for small angles where The difference of two nearby quantities results in catastrophic cancellation: because most of the digits of each quantity are the same, they cancel in the subtraction, yielding a lower-precision result.

For example, the secant of is sec1° ≈ 1.000152, with the leading several digits wasted on zeros, while the common logarithm of the exsecant of is logexsec1° ≈ −3.817220, [22] all of whose digits are meaningful. If the logarithm of exsecant is calculated by looking up the secant in a six-place trigonometric table and then subtracting 1, the difference sec1 ≈ 0.000152 has only 3 significant digits, and after computing the logarithm only three digits are correct, log(sec1) ≈ −3.818156. [23] For even smaller angles loss of precision is worse.

If a table or computer implementation of the exsecant function is not available, the exsecant can be accurately computed as or using versine, which can itself be computed as ; Haslett used these identities to compute his 1855 exsecant and versine tables. [24] [25]

For a sufficiently small angle, a circular arc is approximately shaped like a parabola, and the versine and exsecant are approximately equal to each-other and both proportional to the square of the arclength. [26]

Mathematical identities

Inverse function

The inverse of the exsecant function, which might be symbolized arcexsec, [5] is well defined if or and can be expressed in terms of other inverse trigonometric functions (using radians for the angle):

the arctangent expression is well behaved for small angles. [27]

Calculus

While historical uses of the exsecant did not explicitly involve calculus, its derivative and antiderivative (for x in radians) are: [28]

Double angle identity

The exsecant of twice an angle is: [5]

See also

Related Research Articles

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has

<span class="mw-page-title-main">Slope</span> Mathematical term

In mathematics, the slope or gradient of a line is a number that describes both the direction and the steepness of the line. Slope is often denoted by the letter m; there is no clear answer to the question why the letter m is used for slope, but its earliest use in English appears in O'Brien (1844) who wrote the equation of a straight line as "y = mx + b" and it can also be found in Todhunter (1888) who wrote it as "y = mx + c".

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Trigonometric tables</span> Overview about trigonometric tables

In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

<span class="mw-page-title-main">Chord (geometry)</span> Geometric line segment whose endpoints both lie on the curve

A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta.

<span class="mw-page-title-main">Gudermannian function</span> Mathematical function relating circular and hyperbolic functions

In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Versine</span> 1 minus the cosine of an angle

The versine or versed sine is a trigonometric function found in some of the earliest trigonometric tables. The versine of an angle is 1 minus its cosine.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle radians onto the line through the angles . Among these formulas are the following:

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

Prosthaphaeresis was an algorithm used in the late 16th century and early 17th century for approximate multiplication and division using formulas from trigonometry. For the 25 years preceding the invention of the logarithm in 1614, it was the only known generally applicable way of approximating products quickly. Its name comes from the Greek prosthen (πρόσθεν) meaning before and aphaeresis (ἀφαίρεσις), meaning taking away or subtraction.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

The integral of secant cubed is a frequent and challenging indefinite integral of elementary calculus:

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

<span class="mw-page-title-main">Unit circle</span> Circle with radius of one

In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S1 because it is a one-dimensional unit n-sphere.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

<span class="mw-page-title-main">Integral of the secant function</span> Antiderivative of the secant function

In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,

References

  1. Cajori, Florian (1929). A History of Mathematical Notations. Vol. 2. Chicago: Open Court. §527. "Less common trigonometric functions", pp. 171–172.
  2. 1 2 Haslett, Charles (1855). "The Engineer's Field Book". In Hackley, Charles W. (ed.). The Mechanic's, Machinist's, and Engineer's Practical Book of Reference; Together with the Engineer's Field Book. New York: James G. Gregory. pp. 371–512.
    As the book's editor Charles W. Hackley explains in the preface, "The use of the more common trigonometric functions, to wit, sines, cosines, tangents, and cotangents, which ordinary tables furnish, is not well adapted to the peculiar problems which are presented in the construction of Railroad curves. [...] Still there would be much labor of computation which may be saved by the use of tables of external secants and versed sines, which have been employed with great success recently by the Engineers on the Ohio and Mississippi Railroad, and which, with the formulas and rules necessary for their application to the laying down of curves, drawn up by Mr. Haslett, one of the Engineers of that Road, are now for the first time given to the public." (pp. vi–vii)
    Charles Haslett continues in his preface to the Engineer's Field Book: "Experience has shown, that versed sines and external secants as frequently enter into calculations on curves as sines and tangents; and by their use, as illustrated in the examples given in this work, it is believed that many of the rules in general use are much simplified, and many calculations concerning curves and running lines made less intricate, and results obtained with more accuracy and far less trouble, than by any methods laid down in works of this kind. [...] In addition to the tables generally found in books of this kind, the author has prepared, with great labor, a Table of Natural and Logarithmic Versed Sines and External Secants, calculated to degrees, for every minute; also, a Table of Radii and their Logarithms, from 1° to 60°." (pp. 373–374)
    Review: Poor, Henry Varnum, ed. (1856-03-22). "Practical Book of Reference, and Engineer's Field Book. By Charles Haslett". American Railroad Journal (Review). Second Quarto Series. XII (12): 184. Whole No. 1040, Vol. XXIX.
  3. Kenyon, Alfred Monroe; Ingold, Louis (1913). Trigonometry. New York: The Macmillan Company. p. 5.
    Hudson, Ralph Gorton; Lipka, Joseph (1917). A Manual of Mathematics. New York: John Wiley & Sons. p. 68.
    McNeese, Donald C.; Hoag, Albert L. (1957). Engineering and Technical Handbook . Englewood Cliffs, NJ: Prentice-Hall. pp. 147, 315–325 (table 41). LCCN   57-6690.
    Zucker, Ruth (1964). "4.3.147: Elementary Transcendental Functions - Circular functions". In Abramowitz, Milton; Stegun, Irene A. (eds.). Handbook of Mathematical Functions . Washington, D.C.: National Bureau of Standards. p. 78. LCCN   64-60036.
  4. Bohannan, Rosser Daniel (1904) [1903]. "$131. The Versed Sine, Exsecant and Coexsecant. §132. Exercises". Plane Trigonometry. Boston: Allyn and Bacon. pp. 235–236.
  5. 1 2 3 Hall, Arthur Graham; Frink, Fred Goodrich (1909). "Review Exercises". Plane Trigonometry. New York: Henry Holt and Company. § "Secondary Trigonometric Functions", pp. 125–127.
  6. Oldham, Keith B.; Myland, Jan C.; Spanier, Jerome (2009) [1987]. An Atlas of Functions (2nd ed.). Springer. Ch. 33, "The Secant sec(x) and Cosecant csc(x) functions", §33.13, p. 336. doi:10.1007/978-0-387-48807-3. ISBN   978-0-387-48806-6. Not appearing elsewhere in the Atlas, and not available through Equator, is the archaic exsecant function [...].
  7. Patu, Andræâ-Claudio (André Claude); Le Tort, Bartholomæus (1745). Rivard, Franciscus (Dominique-François) [in French] (ed.). Theses Mathematicæ De Mathesi Generatim (in Latin). Paris: Ph. N. Lottin. p. 6.
    Lemonnier, Petro (Pierre) (1750). Genneau, Ludovicum (Ludovico); Rollin, Jacobum (Jacques) (eds.). Cursus Philosophicus Ad Scholarum Usum Accomodatus (in Latin). Vol. 3. Collegio Harcuriano (Collège d'Harcourt), Paris. pp. 303–.
    Thysbaert, Jan-Frans (1774). "Articulus II: De situ lineæ rectæ ad Circularem; & de mensura angulorum, quorum vertex non est in circuli centro. §1. De situ lineæ rectæ ad Circularem. Definitio II: [102]". Geometria elementaria et practica (in Latin). Lovanii, e typographia academica. p. 30, foldout.
    van Haecht, Joannes (1784). "Articulus III: De secantibus circuli: Corollarium III: [109]". Geometria elementaria et practica: quam in usum auditorum (in Latin). Lovanii, e typographia academica. p. 24, foldout.
  8. Galileo used the Italian segante.
    Galilei, Galileo (1632). Dialogo di Galileo Galilei sopra i due massimi sistemi del mondo Tolemaico e Copernicano [Dialogue on the Two Chief World Systems, Ptolemaic and Copernican] (in Italian).
    Galilei, Galileo (1997) [1632]. Finocchiaro, Maurice A. (ed.). Galileo on the World Systems: A New Abridged Translation and Guide. University of California Press. pp. 184 (n130), 184 (n135), 192 (n158). ISBN   9780520918221. [...] Galileo's word is segante (meaning secant), but he clearly intends exsecant; an exsecant is defined as the part of a secant external to the circle [...]
    Finocchiaro, Maurice A. (2003). "Physical-Mathematical Reasoning: Galileo on the Extruding Power of Terrestrial Rotation". Synthese. 134 (1–2, Logic and Mathematical Reasoning): 217–244. JSTOR   20117331.
  9. Allen, Calvin Frank (1894) [1889]. Railroad Curves and Earthwork. New York: Spon & Chamberlain. p. 20.
  10. Van Brummelen, Glen (2021). "2. Logarithms". The Doctrine of Triangles. Princeton University Press. pp. 62–109. ISBN   9780691179414.
  11. Frye, Albert I. (1918) [1913]. Civil engineer's pocket-book: a reference-book for engineers, contractors and students containing rules, data, methods, formulas and tables (2nd ed.). New York: D. Van Nostrand Company. p. 211.
  12. Gillespie, William M. (1853). A Manual of the Principles and Practice of Road-Making. New York: A. S. Barnes & Co. pp. 140–141.
  13. Searles, William Henry (1880). Field Engineering. A hand-book of the Theory and Practice of Railway Surveying, Location, and Construction. New York: John Wiley & Sons. (17th edition with Howard Chapin Ives, 1915)
  14. 1 2 Jordan, Leonard C. (1913). The Practical Railway Spiral. New York: D. Van Nostrand Company. p. 28.
  15. Thornton-Smith, G. J. (1963). "Almost Exact Closed Expressions for Computing all the Elements of the Clothoid Transition Curve". Survey Review. 17 (127): 35–44. doi:10.1179/sre.1963.17.127.35.
  16. Doolittle, H. J.; Shipman, C. E. (1911). "Economic Canal Location in Uniform Countries". Papers and Discussions. Proceedings of the American Society of Civil Engineers. 37 (8): 1161–1164.
  17. For example:
    Hewes, Laurence Ilsley (1942). American Highway Practice . New York: John Wiley & Sons. p. 114.
    Ives, Howard Chapin (1966) [1929]. Highway Curves (4th ed.). New York: John Wiley & Sons. LCCN   52-9033.
    Meyer, Carl F. (1969) [1949]. Route Surveying and Design (4th ed.). Scranton, PA: International Textbook Co.
  18. Wilson, T. R. C. (1929). "A Graphical Method for the Solution of Certain Types of Equations". Questions and Discussions. The American Mathematical Monthly. 36 (10): 526–528. JSTOR   2299964.
  19. Johnson, Harry F. (1933). "Correction for inclination of sounding wire". The International Hydrographic Review. 10 (2): 176–179.
  20. Calvert, James B. (2007) [2004]. "Trigonometry". Archived from the original on 2007-10-02. Retrieved 2015-11-08.
  21. Simpson, David G. (2001-11-08). "AUXTRIG" (Fortran 90 source code). Greenbelt, MD: NASA Goddard Space Flight Center . Retrieved 2015-10-26.
    van den Doel, Kees (2010-01-25). "jass.utils Class Fmath". JASS - Java Audio Synthesis System. 1.25. Retrieved 2015-10-26.
    "MIT/GNU Scheme – Scheme Arithmetic" (MIT/GNU Scheme source code). v. 12.1. Massachusetts Institute of Technology. 2023-09-01. exsec function, arith.scm lines 61–63. Retrieved 2024-04-01.
  22. In a table of logarithmic exsecants such as Haslett (1855) p. 417 or Searles (1915) [1880] p. 135, the number given for logexsec is 6.182780, which is the correct value plus 10, which is added to keep the entries in the table positive.
  23. The incorrect digits are highlighted in red.
  24. Haslett 1855, p. 415
  25. Nagle, James C. (1897). "IV. Transition Curves". Field Manual for Railroad Engineers (1st ed.). New York: John Wiley and Sons. §§ 138–165, pp. 110–142; Table XIII: Natural Versines and Exsecants, pp. 332–354.
  26. Shunk, William Findlay (1918) [1890]. The Field Engineer: A Handy Book of Practice in the Survey, Location, and Track-Work of Railroads (21st ed.). New York: D. Van Nostrand Company. p. 36.
  27. "4.5 Numerical operations". MIT/GNU Scheme Documentation. v. 12.1. Massachusetts Institute of Technology. 2023-09-01. procedure: aexsec. Retrieved 2024-04-01.
    "MIT/GNU Scheme – Scheme Arithmetic" (MIT/GNU Scheme source code). v. 12.1. Massachusetts Institute of Technology. 2023-09-01. aexsec function, arith.scm lines 65–71. Retrieved 2024-04-01.
  28. Weisstein, Eric W. (2015) [2005]. "Exsecant". MathWorld . Wolfram Research, Inc. Retrieved 2015-11-05.