Track transition curve

Last updated
The red Euler spiral is an example of an easement curve between a blue straight line and a circular arc, shown in green. Easement curve.svg
The red Euler spiral is an example of an easement curve between a blue straight line and a circular arc, shown in green.
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle (click on thumbnail to observe). CornuSpiralAnimation.gif
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle (click on thumbnail to observe).
This sign aside a railroad (between Ghent and Bruges) indicates the start of the transition curve. A parabolic curve (POB) is used. Parabolic transition curve.JPG
This sign aside a railroad (between Ghent and Bruges) indicates the start of the transition curve. A parabolic curve (POB) is used.

A transition curve (also, spiral easement or, simply, spiral) is a spiral-shaped length of highway or railroad track that is used between sections having different profiles and radii, such as between straightaways (tangents) and curves, or between two different curves. [1]

Contents

In the horizontal plane, the radius of a transition curve varies continually over its length between the disparate radii of the sections that it joins—for example, from infinite radius at a tangent to the nominal radius of a smooth curve. The resulting spiral provides a gradual, eased transition, preventing undesirable sudden, abrupt changes in lateral (centripetal) acceleration that would otherwise occur without a transition curve. Similarly, on highways, transition curves allow drivers to change steering gradually when entering or exiting curves.

Transition curves also serve as a transition in the vertical plane, whereby the elevation of the inside or outside of the curve is lowered or raised to reach the nominal amount of bank for the curve.

History

On early railroads, because of the low speeds and wide-radius curves employed, the surveyors were able to ignore any form of easement, but during the 19th century, as speeds increased, the need for a track curve with gradually increasing curvature became apparent. Rankine's 1862 "Civil Engineering" [2] cites several such curves, including an 1828 or 1829 proposal based on the "curve of sines" by William Gravatt, and the curve of adjustment by William Froude around 1842 approximating the elastic curve. The actual equation given in Rankine is that of a cubic curve, which is a polynomial curve of degree 3, at the time also known as a cubic parabola.

In the UK, only from 1845, when legislation and land costs began to constrain the laying out of rail routes and tighter curves were necessary, were the principles beginning to be applied in practice.

Brusio spiral viaduct and railway (Switzerland, built 1908), from above Brusio Viaduct (158241421).jpeg
Brusio spiral viaduct and railway (Switzerland, built 1908), from above

The 'true spiral', whose curvature is exactly linear in arclength, requires more sophisticated mathematics (in particular, the ability to integrate its intrinsic equation) to compute than the proposals that were cited by Rankine. Several late-19th century civil engineers seem to have derived the equation for this curve independently (all unaware of the original characterization of the curve by Leonhard Euler in 1744). Charles Crandall [3] gives credit to one Ellis Holbrook, in the Railroad Gazette, Dec. 3, 1880, for the first accurate description of the curve. Another early publication was The Railway Transition Spiral by Arthur N. Talbot, [4] originally published in 1890. Some early 20th century authors [5] call the curve "Glover's spiral" and attribute it to James Glover's 1900 publication. [6]

The equivalence of the railroad transition spiral and the clothoid seems to have been first published in 1922 by Arthur Lovat Higgins. [5] Since then, "clothoid" is the most common name given the curve, but the correct name (following standards of academic attribution) is 'the Euler spiral'. [7]

Geometry

While railroad track geometry is intrinsically three-dimensional, for practical purposes the vertical and horizontal components of track geometry are usually treated separately. [8] [9]

The overall design pattern for the vertical geometry is typically a sequence of constant grade segments connected by vertical transition curves in which the local grade varies linearly with distance and in which the elevation therefore varies quadratically with distance. Here grade refers to the tangent of the angle of rise of the track. The design pattern for horizontal geometry is typically a sequence of straight line (i.e., a tangent) and curve (i.e. a circular arc) segments connected by transition curves.

The degree of banking in railroad track is typically expressed as the difference in elevation of the two rails, commonly quantified and referred to as the superelevation. Such difference in the elevation of the rails is intended to compensate for the centripetal acceleration needed for an object to move along a curved path, so that the lateral acceleration experienced by passengers/the cargo load will be minimized, which enhances passenger comfort/reduces the chance of load shifting (movement of cargo during transit, causing accidents and damage).

It is important to note that superelevation is not the same as the roll angle of the rail which is used to describe the "tilting" of the individual rails instead of the banking of the entire track structure as reflected by the elevation difference at the "top of rail". Regardless of the horizontal alignment and the superelevation of the track, the individual rails are almost always designed to "roll"/"cant" towards gage side (the side where the wheel is in contact with the rail) to compensate for the horizontal forces exerted by wheels under normal rail traffic.

The change of superelevation from zero in a tangent segment to the value selected for the body of a following curve occurs over the length of a transition curve that connects the tangent and the curve proper. Over the length of the transition the curvature of the track will also vary from zero at the end abutting the tangent segment to the value of curvature of the curve body, which is numerically equal to one over the radius of the curve body.

The simplest and most commonly used form of transition curve is that in which the superelevation and horizontal curvature both vary linearly with distance along the track. Cartesian coordinates of points along this spiral are given by the Fresnel integrals. The resulting shape matches a portion of an Euler spiral, which is also commonly referred to as a "clothoid", and sometimes "Cornu spiral".

A transition curve can connect a track segment of constant non-zero curvature to another segment with constant curvature that is zero or non-zero of either sign. Successive curves in the same direction are sometimes called progressive curves and successive curves in opposite directions are called reverse curves.

The Euler spiral provides the shortest transition subject to a given limit on the rate of change of the track superelevation (i.e. the twist of the track). However, as has been recognized for a long time, it has undesirable dynamic characteristics due to the large (conceptually infinite) roll acceleration and rate of change of centripetal acceleration at each end. Because of the capabilities of personal computers it is now practical to employ spirals that have dynamics better than those of the Euler spiral.

See also

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Jerk (physics)</span> Rate of change of acceleration with time

In physics, jerk or jolt is the rate at which an object's acceleration changes with respect to time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

<span class="mw-page-title-main">Sphere</span> Geometrical object that is the surface of a ball

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

<span class="mw-page-title-main">Railway track</span> Rail infrastructure

A railway track or railroad track, also known as a train track, permanent way or simply track, is the structure on a railway or railroad consisting of the rails, fasteners, railroad ties and ballast, plus the underlying subgrade. It enables trains to move by providing a dependable surface for their wheels to roll upon. Early tracks were constructed with wooden or cast iron rails, and wooden or stone sleepers; since the 1870s, rails have almost universally been made from steel.

As used in mechanical engineering, the term tractive force can either refer to the total traction a vehicle exerts on a surface, or the amount of the total traction that is parallel to the direction of motion.

<span class="mw-page-title-main">Derailment</span> Form of train incident

In rail transport, a derailment occurs when a rail vehicle such as a train comes off its rails. Although many derailments are minor, all result in temporary disruption of the proper operation of the railway system and they are a potentially serious hazard.

Degree of curve or degree of curvature is a measure of curvature of a circular arc used in civil engineering for its easy use in layout surveying.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

<span class="mw-page-title-main">Hunting oscillation</span> Self-oscillation about an equilibrium that is usually unwanted

Hunting oscillation is a self-oscillation, usually unwanted, about an equilibrium. The expression came into use in the 19th century and describes how a system "hunts" for equilibrium. The expression is used to describe phenomena in such diverse fields as electronics, aviation, biology, and railway engineering.

Railway engineering is a multi-faceted engineering discipline dealing with the design, construction and operation of all types of rail transport systems. It encompasses a wide range of engineering disciplines, including civil engineering, computer engineering, electrical engineering, mechanical engineering, industrial engineering and production engineering. A great many other engineering sub-disciplines are also called upon.

<span class="mw-page-title-main">Track geometry car</span> Automated railway track inspection vehicle

A track geometry car is an automated track inspection vehicle on a rail transport system used to test several parameters of the track geometry without obstructing normal railroad operations. Some of the parameters generally measured include position, curvature, alignment of the track, smoothness, and the crosslevel of the two rails. The cars use a variety of sensors, measuring systems, and data management systems to create a profile of the track being inspected.

<span class="mw-page-title-main">Cant deficiency</span> When a rail vehicles speed on a curved rail is high enough to begin tipping over

In railway engineering, cant deficiency is defined in the context of travel of a rail vehicle at constant speed on a constant-radius curve. Cant itself refers to the superelevation of the curve, that is, the difference between the elevations of the outside and inside rails. Cant deficiency is present when a rail vehicle's speed on the curve is greater than the speed at which the components of wheel to rail force are normal to the plane of the track. In that case, the resultant force exerts on the outside rail more than the inside rail, in which it creates lateral acceleration toward the outside of the curve. In order to reduce cant deficiency, the speed can be reduced or the superelevation can be increased. The amount of cant deficiency is expressed in terms of required superelevation to be added in order to bring the resultant force into balance between the two rails.

<span class="mw-page-title-main">Curve resistance (railroad)</span> Additional rolling resistance present in curved sections of rail track

In railway engineering, curve resistance is a part of train resistance, namely the additional rolling resistance a train must overcome when travelling on a curved section of track. Curve resistance is typically measured in per mille, with the correct physical unit being Newton per kilo-Newton (N/kN). Older texts still use the wrong unit of kilogram-force per tonne (kgf/t).

<span class="mw-page-title-main">Euler spiral</span> Curve whose curvature changes linearly

An Euler spiral is a curve whose curvature changes linearly with its curve length. Euler spirals are also commonly referred to as spiros, clothoids, or Cornu spirals.

<span class="mw-page-title-main">Minimum railway curve radius</span> Shortest allowable design radius for the centerline of railway tracks

The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation in the case of train tracks, determines the maximum safe speed of a curve. The minimum radius of a curve is one parameter in the design of railway vehicles as well as trams; monorails and automated guideways are also subject to a minimum radius.

<span class="mw-page-title-main">Geometric design of roads</span> Geometry of road design

The geometric design of roads is the branch of highway engineering concerned with the positioning of the physical elements of the roadway according to standards and constraints. The basic objectives in geometric design are to optimize efficiency and safety while minimizing cost and environmental damage. Geometric design also affects an emerging fifth objective called "livability," which is defined as designing roads to foster broader community goals, including providing access to employment, schools, businesses and residences, accommodate a range of travel modes such as walking, bicycling, transit, and automobiles, and minimizing fuel use, emissions and environmental damage.

A railway or railroad is a track where the vehicle travels over two parallel steel bars, called rails. The rails support and guide the wheels of the vehicles, which are traditionally either trains or trams. Modern light rail is a relatively new innovation which combines aspects of those two modes of transport. However fundamental differences in the track and wheel design are important, especially where trams or light railways and trains have to share a section of track, as sometimes happens in congested areas.

<span class="mw-page-title-main">Track geometry</span> Three-dimensional geometry of track layouts and associated measurements

Track geometry is concerned with the properties and relations of points, lines, curves, and surfaces in the three-dimensional positioning of railroad track. The term is also applied to measurements used in design, construction and maintenance of track. Track geometry involves standards, speed limits and other regulations in the areas of track gauge, alignment, elevation, curvature and track surface. Standards are usually separately expressed for horizontal and vertical layouts although track geometry is three-dimensional.

<span class="mw-page-title-main">Cant (road/rail)</span> Rate of change in elevation between the two rails or edges of a road

The cant of a railway track or camber of a road is the rate of change in elevation (height) between the two rails or edges of the road. This is normally greater where the railway or road is curved; raising the outer rail or the outer edge of the road creates a banked turn, thus allowing vehicles to travel round the curve at faster speeds which would otherwise not be possible if the surface is flat or level.

References

  1. Constantin (03/07/2016). "The Clothoid". Pwayblog. Retrieved 2023-06-07.{{cite web}}: Check date values in: |date= (help)
  2. Rankine, William (1883). A Manual of Civil Engineering (17th ed.). Charles Griffin. pp.  651–653.
  3. Crandall, Charles (1893). The Transition Curve. Wiley.
  4. Talbot, Arthur (1901). The Railway Transition Spiral. Engineering News Publishing.
  5. 1 2 Higgins, Arthur (1922). The Transition Spiral and Its Introduction to Railway Curves. Van Nostrand.
  6. Glover, James (1900). "Transition Curves for Railways". Minutes of Proceedings of the Institution of Civil Engineers. pp. 161–179.
  7. Archibald, Raymond Clare (June 1917). "Euler Integrals and Euler's Spiral--Sometimes called Fresnel Integrals and the Clothoide or Cornu's Spiral". American Mathematical Monthly. 25 (6): 276–282 via Glassblower.Info.
  8. Lautala, Pasi; Dick, Tyler. "Railway Alignment Design and Geometry" (PDF).
  9. Lindamood, Brian; Strong, James C.; McLeod, James (2003). "Railway Track Design" (PDF). Practical Guide to Railway Engineering. American Railway Engineering and Maintenance-of-Way Association. Archived from the original (PDF) on November 30, 2016.

Sources