Degree of curvature

Last updated

Degree of curve or degree of curvature is a measure of curvature of a circular arc used in civil engineering for its easy use in layout surveying.

Contents

Definition

The degree of curvature is defined as the central angle to the ends of an agreed length of either an arc or a chord; [1] various lengths are commonly used in different areas of practice. This angle is also the change in forward direction as that portion of the curve is traveled. In an n-degree curve, the forward bearing changes by n degrees over the standard length of arc or chord.

Usage

Curvature is usually measured in radius of curvature. A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is large as a kilometer or a mile, as it needed for large scale works like roads and railroads. By using degrees of curvature, curve setting can be easily done with the help of a transit or theodolite and a chain, tape, or rope of a prescribed length.

Length selection

The usual distance used to compute degree of curvature in North American road work is 100 feet (30.5 m) of arc. [2] [ page needed ] Conversely, North American railroad work traditionally used 100 feet of chord, which is used in other places[ where? ] for road work. Other lengths may be used—such as 100 metres (330 ft) where SI is favoured or a shorter length for sharper curves. Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius.

Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic calculators became available.

The 100 feet (30.48 m) is called a station, used to define length along a road or other alignment, annotated as stations plus feet 1+00, 2+00, etc. Metric work may use similar notation, such as kilometers plus meters 1+000.

Formulas for radius of curvature

Diagram showing different parts of the curve used in the formula Degree of Curvature Formula Explanation.svg
Diagram showing different parts of the curve used in the formula

Degree of curvature can be converted to radius of curvature by the following formulae:

Formula from arc length

where is arc length, is radius of curvature, and is degree of curvature, arc definition

Substitute deflection angle for degree of curvature or make arc length equal to 100 feet.

Formula from chord length


where is chord length, is radius of curvature and is degree of curvature, chord definition

Formula from radius

Example

As an example, a curve with an arc length of 600 units that has an overall sweep of 6 degrees is a 1-degree curve: For every 100 feet of arc, the bearing changes by 1 degree. The radius of such a curve is 5729.57795. If the chord definition is used, each 100-unit chord length will sweep 1 degree with a radius of 5729.651 units, and the chord of the whole curve will be slightly shorter than 600 units.

See also

Related Research Articles

Circle Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

A centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

Radian SI derived unit of angle

The radian, denoted by the symbol rad, is the SI unit for measuring angles, and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit and the radian is now an SI derived unit. The radian is defined in the SI as being a dimensionless unit with 1 rad = 1. Its symbol is accordingly often omitted, especially in mathematical writing.

Sphere Geometrical object that is the surface of a ball

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

Horizon Apparent line that separates earth from sky

The horizon is the apparent line that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This line divides all viewing directions based on whether it intersects the relevant body's surface or not.

Curvature Measure of the property of a curve or a surface to be "bended"

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

Law of sines Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle to the sines of its angles. According to the law,

Fermats spiral Spiral that surrounds equal area per turn

A Fermat's spiral or parabolic spiral is a plane curve named after Pierre de Fermat. Its polar coordinate representation is given by

Circular segment Slice of a circle cut perpendicular to the radius

In geometry, a circular segment, also known as a disk segment, is a region of a disk which is "cut off" from the rest of the disk by a secant or a chord. More formally, a circular segment is a region of two-dimensional space that is bounded by a circular arc and by the circular chord connecting the endpoints of the arc.

Osculating circle Circle of immediate corresponding curvature of a curve at a point

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans by Leibniz.

Area of a circle

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.1416.

Arc length Distance along a curve

Arc length is the distance between two points along a section of a curve.

Circular sector Portion of a disk enclosed by two radii and an arc

A circular sector, also known as circle sector or disk sector, is the portion of a disk enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector.

Circular arc Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, will subtend an angle at the centre of the circle that is less than π radians, and the other arc, the major arc, will subtend an angle greater than π radians.The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that could be drawn by connecting the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

Tortuosity Parameter for diffusion and fluid flow in porous media

Tortuosity is a property of a curve being tortuous. There have been several attempts to quantify this property. Tortuosity is commonly used to describe diffusion and fluid flow in porous media, such as soils and snow.

Radius of curvature Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

Sagitta (geometry)

In geometry, the sagitta of a circular arc is the distance from the center of the arc to the center of its base. It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror or lens. The name comes directly from Latin sagitta, meaning an arrow.

Hallade method

The Hallade method, devised by Frenchman Emile Hallade, is a method used in track geometry for surveying, designing and setting out curves in railway track.

Track geometry Three-dimensional geometry of track layouts and associated measurements

Track geometry is concerned with the properties and relations of points, lines, curves, and surfaces in the three-dimensional positioning of railroad track. The term is also applied to measurements used in design, construction and maintenance of track. Track geometry involves standards, speed limits and other regulations in the areas of track gauge, alignment, elevation, curvature and track surface. Standards are usually separately expressed for horizontal and vertical layouts although track geometry is three-dimensional.

Cant (road/rail) Rate of change in elevation between the two rails or edges

The cant of a railway track or camber of a road is the rate of change in elevation (height) between the two rails or edges. This is normally greater where the railway or road is curved; raising the outer rail or the outer edge of the road creates a banked turn, thus allowing vehicles to maneuver through the curve at higher speeds than would otherwise be possible if the surface is flat or level.

References

  1. Wolf; Ghilani (2006), Elementary Surveying (11th ed.), ISBN   9780131481893
  2. Davis, Raymond Earl; Foote, Francis Seeley; Kelly, Joe Wallace (1966). Surveying Theory and Practice. McGraw-Hill. ISBN   978-0-07-015812-2.