Body relative direction

Last updated
A non-flipped image of a right-handed Cartesian coordinate system, illustrating the x (right-left), y (forward-backward) and z (up-down) axes relative to a human being. XYZ model.jpg
A non-flipped image of a right-handed Cartesian coordinate system, illustrating the x (right-left), y (forward-backward) and z (up-down) axes relative to a human being.

Body relative directions (also known as egocentric coordinates) [1] are geometrical orientations relative to a body such as a human person's body or a road sign. The most common ones are: left and right; forward and backward; up and down. They form three pairs of orthogonal axes.

Contents

Traditions and conventions

Since definitions of left and right based on the geometry of the natural environment are unwieldy, in practice, the meaning of relative direction words is conveyed through tradition, acculturation, education, and direct reference. One common definition of up and down uses the gravity of Earth as a frame of reference. Since there is a very noticeable force of gravity acting between the Earth and any other nearby object, down is defined as that direction which an object moves in reference to the Earth when the object is allowed to fall freely. Up is then defined as the opposite direction of down. Another common definition uses a human body, standing upright, as a frame of reference. In that case, up is defined as the direction from feet to head, perpendicular to the surface of the Earth. In most cases, up is a directionally oriented position generally opposite to that of the pull of gravity.

This statue holds a sword in its proper right hand Orestes (1848).jpg
This statue holds a sword in its proper right hand

In situations where a common frame of reference is needed, it is most common to use an egocentric view. A simple example is road signage. Another example is stage blocking, where "stage left" "stage right" are, by convention, defined from the point of view of actors facing the audience. "Upstage" and "downstage" do not follow gravity but by convention mean away from and towards the audience. An example of a non-egocentric view is page layout, where the relative terms "upper half" "left margin," etc. are defined in terms of the observer but employed in reverse for a type compositor, returning to an egocentric view. In medicine and science, where precise definitions are crucial, relative directions (left and right) are the sides of the organism, not those of the observer. The same is true in heraldry, where left and right in a coat of arms is treated as if the shield were being held by the armiger. To avoid confusion, Latin terminology is employed: dexter and sinister for right and left. Proper right and proper left are terms mainly used to describe artistic images, and overcome the potential confusion that a figure's "own" right or "proper right" hand is on the left hand as the viewer sees it from the front.

Forward and backward may be defined by referring to an object's or organism's motion. Forward is defined as the direction in which the object is moving. Backward is then defined as the opposite direction to forward. Alternatively, 'forward' may be the direction pointed by the observer's nose, defining 'backward' as the direction from the nose to the sagittal border in the observer's skull. With respect to a ship 'forward' would indicate the relative position of any object lying in the direction the ship is pointing. For symmetrical objects, it is also necessary to define forward and backward in terms of expected direction. Many mass transit trains are built symmetrically with paired control booths, and definitions of forward, backward, left, and right are temporary.

Given significant distance from the magnetic poles, one can figure which hand is which using a magnetic compass and the sun. Facing the sun, before noon, the north pointer of the compass points to the "left" hand. After noon, it points to the "right".

Geometry of the natural environment

Type compositing Sorts on composing stick.jpg
Type compositing

A right-hand rule is one common way to relate three principal directions. For many years a fundamental question in physics was whether a left-hand rule would be equivalent. Many natural structures, including human bodies, follow a certain "handedness", but it was widely assumed that nature did not distinguish the two possibilities. This changed with the discovery of parity violations in particle physics. If a sample of cobalt-60 atoms is magnetized so that they spin counterclockwise around some axis, the beta radiation resulting from their nuclear decay will be preferentially directed opposite that axis. Since counter-clockwise may be defined in terms of up, forward, and right, this experiment unambiguously differentiates left from right using only natural elements: if they were reversed, or the atoms spun clockwise, the radiation would follow the spin axis instead of being opposite to it.

Nautical terminology

Bow, stern, port, starboard, fore and aft are nautical terms that convey an impersonal relative direction in the context of the moving frame of persons aboard a ship. The need for impersonal terms is most clearly seen in a rowing shell where the majority of the crew face aft ("backwards"), hence the oars to their right are actually on the port side of the boat. Rowers eschew the terms left, right, port and starboard in favor of stroke-side and bow-side. The usage derives from the tradition of having the stroke (the rower closest to the stern of the boat) oar on the port side of the boat.

Cultures without relative directions

Most human cultures use relative directions for reference, but there are exceptions. Some Australian Aboriginal languages like Guugu Yimithirr, Kayardild and Kuuk Thaayorre have no words denoting the egocentric directions; instead, speakers exclusively refer to cardinal directions, even when describing small-scale spaces. For instance, if they wanted someone to move over on the car seat to make room, they might say "move a bit to the east". To tell someone where exactly they left something in their house, they might say, "I left it on the southern edge of the western table." Or they might warn a person to "look out for that big ant just north of your foot". Other peoples "from Polynesia to Mexico and from Namibia to Bali" similarly have predominantly "geographic languages". [1] American Sign Language makes heavy use of geographical direction through absolute orientation.[ clarification needed ]

Left-right discrimination and left-right confusion

Left–right confusion (LRC) is the inability to accurately differentiate between left and right directions. Conversely, Left–right discrimination (LRD) refers to a person's ability to differentiate between left and right. LRC is reported by approximately 15% of the population according to the 2020 research by Van der Ham and her colleagues. [2] People who have LRC can typically perform daily navigational tasks, such as driving according to road signs or following a map, but may have difficulty performing actions that require a precise understanding of directional commands, such as ballroom dancing. [3] [4] [5] [6]

See also

Related Research Articles

In classical physics and special relativity, an inertial frame of reference is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration.

<span class="mw-page-title-main">Rotation</span> Movement of an object around an axis

Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation, in contrast to rotation around a fixed axis.

<span class="mw-page-title-main">Circular polarization</span> Polarization state

In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to the direction of the wave.

<span class="mw-page-title-main">Mirror image</span> Reflected duplication of an object

A mirror image is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substances such as a mirror or water. It is also a concept in geometry and can be used as a conceptualization process for 3-D structures.

<span class="mw-page-title-main">Asymmetry</span> Absence of, or a violation of, symmetry

Asymmetry is the absence of, or a violation of, symmetry. Symmetry is an important property of both physical and abstract systems and it may be displayed in precise terms or in more aesthetic terms. The absence of or violation of symmetry that are either expected or desired can have important consequences for a system.

Sinistral and dextral, in some scientific fields, are the two types of chirality ("handedness") or relative direction. The terms are derived from the Latin words for "left" (sinister) and "right" (dexter). Other disciplines use different terms or simply use left and right.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

<span class="mw-page-title-main">Orientation (geometry)</span> Notion of pointing in a direction

In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. More specifically, it refers to the imaginary rotation that is needed to move the object from a reference placement to its current placement. A rotation may not be enough to reach the current placement, in which case it may be necessary to add an imaginary translation to change the object's position. The position and orientation together fully describe how the object is placed in space. The above-mentioned imaginary rotation and translation may be thought to occur in any order, as the orientation of an object does not change when it translates, and its position does not change when it rotates.

The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets, as well as natural satellites and minor-planet moons.

In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".

<span class="mw-page-title-main">Centrifugal force</span> Type of inertial force

Centrifugal force is an inertial force in Newtonian mechanics that appears to act on all objects when viewed in a rotating frame of reference. It is directed radially away from the axis of rotation. The magnitude of centrifugal force F on an object of mass m at the distance r from the axis of rotation of a frame of reference rotating with angular velocity ω is:

Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies and the rate of rotation of the spheres. Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation. For all other observers a "correction" is required that accounts for the tension calculated being different from the one expected using the observed rate of rotation. It is one of five arguments from the "properties, causes, and effects" of true motion and rest that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

<span class="mw-page-title-main">Clockwise</span> Movement in the same direction as the hands of a clock

Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is anticlockwise (ACW) or counterclockwise (CCW). Three-dimensional rotation can have similarly defined senses when considering the corresponding angular velocity vector.

<span class="mw-page-title-main">Port and starboard</span> Nautical terms for direction

Port and starboard are nautical terms for watercraft, aircraft and spacecraft, referring respectively to the left and right sides of the vessel, when aboard and facing the bow (front).

<span class="mw-page-title-main">Proper right and proper left</span> Terms for unambiguous directions, like port and starboard

Proper right and proper left are conceptual terms used to unambiguously convey relative direction when describing an image or other object. The "proper right" hand of a figure is the hand that would be regarded by that figure as its right hand. In a frontal representation, that appears on the left as the viewer sees it, creating the potential for ambiguity if the hand is just described as the "right hand".

<span class="mw-page-title-main">Chirality</span> Difference in shape from a mirror image

Chirality is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object.

Poi tricks are defined by the manipulation and combination of several variables of the spinning activity. These variables typically include, but are not limited to, the following:

Spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.

Terms of orientation, terms of location, or spatial words are common linguistic descriptors used to indicate the spatial positioning of objects in three-dimensional space, including notions of top, bottom, front, back, left side, and right side as used in everyday language and interactions. Assigning these to objects then allows things to be described in relation to the object, above, below, in front of, behind, beside, and so forth.

References

  1. 1 2 Deutscher, Guy (August 26, 2010). "Does Your Language Shape How You Think?". The New York Times . Retrieved August 31, 2010.
  2. van der Ham IJ, Dijkerman HC, van Stralen HE (2020). "Distinguishing left from right: A large-scale investigation of left–right confusion in healthy individuals". Quarterly Journal of Experimental Psychology. 74 (3): 497–509. doi: 10.1177/1747021820968519 . hdl: 1887/3251097 . PMID   33124962.
  3. Elving, Belle (2008-07-28). "Which Is Right?". The Washington Post. Retrieved 12 May 2010.
  4. Brandt, Jason; Mackavey, William (1981). "Left-right confusion and the perception of bilateral symmetry". International Journal of Neuroscience. 12 (2): 87–94. doi:10.3109/00207458108985793. PMID   7203826.
  5. Hannay HJ, Ciaccia PJ, Kerr JW, Barrett D (1990). "Self-report of right-left confusion in college men and women". Perceptual and Motor Skills. 70 (2): 451–7. doi:10.2466/pms.1990.70.2.451. PMID   2342844. S2CID   29472925.
  6. Harris, Lauren Julius; Gitterman, Steven R. (1978). "University professors' self-descriptions of left-right confusability: sex and handedness differences". Perceptual and Motor Skills. 47 (3 Pt 1): 819–823. doi:10.2466/pms.1978.47.3.819. PMID   740475. S2CID   88535.