Nose

Last updated

Nose
Canine Nose Macro Photo.png
Nose of a dog
Details
Identifiers
Latin nasus
MeSH D009666
TA98 A06.1.01.001
A01.1.00.009
TA2 117
Anatomical terminology

A nose is a protuberance in vertebrates that houses the nostrils, or nares, which receive and expel air for respiration alongside the mouth. Behind the nose are the olfactory mucosa and the sinuses. Behind the nasal cavity, air next passes through the pharynx, shared with the digestive system, and then into the rest of the respiratory system. In humans, the nose is located centrally on the face and serves as an alternative respiratory passage especially during suckling for infants. [1] [2] [3] The protruding nose that is completely separate from the mouth part is a characteristic found only in therian mammals. It has been theorized that this unique mammalian nose evolved from the anterior part of the upper jaw of the reptilian-like ancestors (synapsids). [4] [5]

Contents

Air treatment

3D medical animation still shot depicting a human nose 3D Medical Animation Nose Top section.jpg
3D medical animation still shot depicting a human nose

Acting as the first interface between the external environment and an animal's delicate internal lungs, a nose conditions incoming air, both as a function of thermal regulation and filtration during respiration, as well as enabling the sensory perception of smell. [6]

Hair inside nostrils filter incoming air, as a first line of defense against dust particles, smoke, and other potential obstructions that would otherwise inhibit respiration, and as a kind of filter against airborne illness. In addition to acting as a filter, mucus produced within the nose supplements the body's effort to maintain temperature, as well as contributes moisture to integral components of the respiratory system. Capillary structures of the nose warm and humidify air entering the body; later, this role in retaining moisture enables conditions for alveoli to properly exchange O2 for CO2 (i.e., respiration) within the lungs. During exhalation, the capillaries then aid recovery of some moisture, mostly as a function of thermal regulation, again. [7]

Sense of direction

The wet nose of dogs is useful for the perception of direction. The sensitive cold receptors in the skin detect the place where the nose is cooled the most and this is the direction a particular smell that the animal just picked up comes from. [8]

Structure in air-breathing forms

The nose of a tapir Malayan Tapir Profile.jpg
The nose of a tapir

In amphibians and lungfish, the nostrils open into small sacs that, in turn, open into the forward roof of the mouth through the choanae. These sacs contain a small amount of olfactory epithelium, which, in the case of caecilians, also lines a number of neighbouring tentacles. Despite the general similarity in structure to those of amphibians, the nostrils of lungfish are not used in respiration, since these animals breathe through their mouths. Amphibians also have a vomeronasal organ, lined by olfactory epithelium, but, unlike those of amniotes, this is generally a simple sac that, except in salamanders, has little connection with the rest of the nasal system. [9]

In reptiles, the nasal chamber is generally larger, with the choanae located much further back in the roof of the mouth. In crocodilians, the chamber is exceptionally long, helping the animal to breathe while partially submerged. The reptilian nasal chamber is divided into three parts: an anterior vestibule, the main olfactory chamber, and a posterior nasopharynx. The olfactory chamber is lined by olfactory epithelium on its upper surface and possesses a number of turbinates to increase the sensory area. The vomeronasal organ is well-developed in lizards and snakes, in which it no longer connects with the nasal cavity, opening directly into the roof of the mouth. It is smaller in turtles, in which it retains its original nasal connection, and is absent in adult crocodilians. [9]

Birds have a similar nose to reptiles, with the nostrils located at the upper rear part of the beak. Since they generally have a poor sense of smell, the olfactory chamber is small, although it does contain three turbinates, which sometimes have a complex structure similar to that of mammals. In many birds, including doves and fowls, the nostrils are covered by a horny protective shield. The vomeronasal organ of birds is either under-developed or altogether absent, depending on the species. [9]

Elephants have prehensile noses. Lightmatter elephanttrunk.jpg
Elephants have prehensile noses.

The nasal cavities in mammals are both fused into one. Among most species they are exceptionally large, typically occupying up to half the length of the skull. In some groups, however, including primates, bats, and cetaceans, the nose has been secondarily reduced, and these animals consequently have a relatively poor sense of smell. The nasal cavity of mammals has been enlarged, in part, by the development of a palate cutting off the entire upper surface of the original oral cavity, which consequently becomes part of the nose, leaving the palate as the new roof of the mouth. The enlarged nasal cavity contains complex turbinates forming coiled scroll-like shapes that help to warm the air before it reaches the lungs. The cavity also extends into neighbouring skull bones, forming additional air cavities known as paranasal sinuses. [9]

In cetaceans, the nose has been reduced to one or two blowholes, which are the nostrils that have migrated to the top of the head. This adaptation gave cetaceans a more streamlined body shape and the ability to breathe while mostly submerged. Conversely, the elephant's nose has elaborated into a long, muscular, manipulative organ called the trunk.

The vomeronasal organ of mammals is generally similar to that of reptiles. In most species, it is located in the floor of the nasal cavity, and opens into the mouth via two nasopalatine ducts running through the palate, but it opens directly into the nose in many rodents. It is, however, lost in bats, and in many primates, including humans. [9]

In fish

Fish have a relatively good sense of smell. [10] Unlike that of tetrapods, the nose has no connection with the mouth, nor any role in respiration. Instead, it generally consists of a pair of small pouches located behind the nostrils at the front or sides of the head. In many cases, each of the nostrils is divided into two by a fold of skin, allowing water to flow into the nose through one side and out through the other. [9]

The pouches are lined by olfactory epithelium, and commonly include a series of internal folds to increase the surface area, often forming an elaborate "olfactory rosette". In some teleosts, the pouches branch off into additional sinus-like cavities, while in coelacanths, they form a series of tubes. [9]

In the earliest vertebrates, there was only one nostril and olfactory pouch, and the nasal passage was connected to the hypophysis. The same anatomy is observed in the most primitive living vertebrates, the lampreys and hagfish. In gnathostome ancestors, the olfactory apparatus gradually became paired (presumably to allow sense of direction of smells), and freeing the midline from the nasal passage allowed evolution of jaws. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals, the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli, and in birds, they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds, the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

<span class="mw-page-title-main">Nostril</span> Pair of orifices of the nose

A nostril is either of the two orifices of the nose. They enable the entry and exit of air and other gasses through the nasal cavities. In birds and mammals, they contain branched bones or cartilages called turbinates, whose function is to warm air on inhalation and remove moisture on exhalation. Fish do not breathe through noses, but they do have two small holes used for smelling, which can also be referred to as nostrils.

<span class="mw-page-title-main">Vomeronasal organ</span> Smell sense organ above the roof of the mouth

The vomeronasal organ (VNO), or Jacobson's organ, is the paired auxiliary olfactory (smell) sense organ located in the soft tissue of the nasal septum, in the nasal cavity just above the roof of the mouth in various tetrapods. The name is derived from the fact that it lies adjacent to the unpaired vomer bone in the nasal septum. It is present and functional in all snakes and lizards, and in many mammals, including cats, dogs, cattle, pigs, and some primates. Some humans may have physical remnants of a VNO, but it is vestigial and non-functional.

<span class="mw-page-title-main">Vomer</span> Unpaired facial bone of the skull

The vomer is one of the unpaired facial bones of the skull. It is located in the midsagittal line, and articulates with the sphenoid, the ethmoid, the left and right palatine bones, and the left and right maxillary bones. The vomer forms the inferior part of the nasal septum in humans, with the superior part formed by the perpendicular plate of the ethmoid bone. The name is derived from the Latin word for a ploughshare and the shape of the bone.

<span class="mw-page-title-main">Flehmen response</span> Behavior in which an animal curls back its upper lip exposing its front teeth

The flehmen response, also called the flehmen position, flehmen reaction, flehmen grimace, flehming, or flehmening, is a behavior in which an animal curls back its upper lip exposing its front teeth, inhales with the nostrils usually closed, and then often holds this position for several seconds. It may be performed over a sight or substance of particular interest to the animal, or may be performed with the neck stretched and the head held high in the air.

<span class="mw-page-title-main">Nasal cavity</span> Large, air-filled space above and behind the nose in the middle of the face

The nasal cavity is a large, air-filled space above and behind the nose in the middle of the face. The nasal septum divides the cavity into two cavities, also known as fossae. Each cavity is the continuation of one of the two nostrils. The nasal cavity is the uppermost part of the respiratory system and provides the nasal passage for inhaled air from the nostrils to the nasopharynx and rest of the respiratory tract.

<span class="mw-page-title-main">Nasal concha</span> Piece of bone in the breathing passage of humans and other animals

In anatomy, a nasal concha, also called a nasal turbinate or turbinal, is a long, narrow, curled shelf of bone that protrudes into the breathing passage of the nose in humans and various animals. The conchae are shaped like an elongated seashell, which gave them their name. A concha is any of the scrolled spongy bones of the nasal passages in vertebrates.

<span class="mw-page-title-main">Olfactory system</span> Sensory system used for smelling

The olfactory system or sense of smell is the sensory system used for smelling (olfaction). Olfaction is one of the special senses, that have directly associated specific organs. Most mammals and reptiles have a main olfactory system and an accessory olfactory system. The main olfactory system detects airborne substances, while the accessory system senses fluid-phase stimuli.

In medicine and anatomy, the special senses are the senses that have specialized organs devoted to them:

<span class="mw-page-title-main">Rhinarium</span>

The rhinarium is the furless skin surface surrounding the external openings of the nostrils in many mammals. Commonly it is referred to as the tip of the snout, and breeders of cats and dogs sometimes use the term nose leather. Informally, it may be called a "truffle", "wet snout," or "wet nose” because its surface is moist in some species: for example, healthy dogs and cats.

<span class="mw-page-title-main">Choana</span> Each of two openings from the nasal cavity to the throat

The choanae, posterior nasal apertures or internal nostrils are two openings found at the back of the nasal passage between the nasal cavity and the pharynx, in humans and other mammals. They are considered one of the most important synapomorphies of tetrapodomorphs, that allowed the passage from water to land.

<span class="mw-page-title-main">Nasal cartilages</span> Supportive structures in the nose

The nasal cartilages are structures within the nose that provide form and support to the nasal cavity. The nasal cartilages are made up of a flexible material called hyaline cartilage in the distal portion of the nose. There are five individual cartilages that make up the nasal cavity: septal nasal cartilage, lateral nasal cartilage, major alar cartilage, minor alar cartilage, and vomeronasal cartilage.

<span class="mw-page-title-main">Human nose</span> Feature of the human face

The human nose is the first organ of the respiratory system. It is also the principal organ in the olfactory system. The shape of the nose is determined by the nasal bones and the nasal cartilages, including the nasal septum which separates the nostrils and divides the nasal cavity into two.

<span class="mw-page-title-main">Respiratory system of the horse</span> Biological system by which a horse circulates air for the purpose of gaseous exchange

The respiratory system of the horse is the biological system by which a horse circulates air for the purpose of gaseous exchange.

<span class="mw-page-title-main">Sense of smell</span> Sense that detects smells

The sense of smell, or olfaction, is the special sense through which smells are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.

<span class="mw-page-title-main">Pharynx</span> Part of the throat that is behind the mouth and nasal cavity

The pharynx is the part of the throat behind the mouth and nasal cavity, and above the esophagus and trachea. It is found in vertebrates and invertebrates, though its structure varies across species. The pharynx carries food to the esophagus and air to the larynx. The flap of cartilage called the epiglottis stops food from entering the larynx.

<i>Glanosuchus</i> Extinct genus of therapsids

Glanosuchus is a genus of scylacosaurid therocephalian from the Late Permian of South Africa. The type species G. macrops was named by Robert Broom in 1904. Glanosuchus had a middle ear structure that was intermediate between that of early therapsids and mammals. Ridges in the nasal cavity of Glanosuchus suggest it had an at least partially endothermic metabolism similar to modern mammals.

<span class="mw-page-title-main">Nasal mucosa</span> Part of the mucus membrane lining the nasal cavity

The nasal mucosa lines the nasal cavity. It is part of the respiratory mucosa, the mucous membrane lining the respiratory tract. The nasal mucosa is intimately adherent to the periosteum or perichondrium of the nasal conchae. It is continuous with the skin through the nostrils, and with the mucous membrane of the nasal part of the pharynx through the choanae. From the nasal cavity its continuity with the conjunctiva may be traced, through the nasolacrimal and lacrimal ducts; and with the frontal, ethmoidal, sphenoidal, and maxillary sinuses, through the several openings in the nasal meatuses. The mucous membrane is thickest, and most vascular, over the nasal conchae. It is also thick over the nasal septum where increased numbers of goblet cells produce a greater amount of nasal mucus. It is very thin in the meatuses on the floor of the nasal cavities, and in the various sinuses. It is one of the most commonly infected tissues in adults and children. Inflammation of this tissue may cause significant impairment of daily activities, with symptoms such as stuffy nose, headache, mouth breathing, etc.

<span class="mw-page-title-main">Sniffing (behavior)</span> Nasal inhalation to sample odors

Sniffing is a perceptually-relevant behavior, defined as the active sampling of odors through the nasal cavity for the purpose of information acquisition. This behavior, displayed by all terrestrial vertebrates, is typically identified based upon changes in respiratory frequency and/or amplitude, and is often studied in the context of odor guided behaviors and olfactory perceptual tasks. Sniffing is quantified by measuring intra-nasal pressure or flow or air or, while less accurate, through a strain gauge on the chest to measure total respiratory volume. Strategies for sniffing behavior vary depending upon the animal, with small animals displaying sniffing frequencies ranging from 4 to 12 Hz but larger animals (humans) sniffing at much lower frequencies, usually less than 2 Hz. Subserving sniffing behaviors, evidence for an "olfactomotor" circuit in the brain exists, wherein perception or expectation of an odor can trigger brain respiratory center to allow for the modulation of sniffing frequency and amplitude and thus acquisition of odor information. Sniffing is analogous to other stimulus sampling behaviors, including visual saccades, active touch, and whisker movements in small animals. Atypical sniffing has been reported in cases of neurological disorders, especially those disorders characterized by impaired motor function and olfactory perception.

Odor molecules are detected by the olfactory receptors in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primates with well-developed vision systems tend to have a smaller number of OR genes. As such, investigating the evolutionary changes of OR genes can provide useful information on how genomes respond to environmental changes. Differences in smell sensitivity are also dependent on the anatomy of the olfactory apparatus, such as the size of the olfactory bulb and epithelium.

References

  1. "7.2 the Skull". Anatomy and Physiology - The Skull. OpenStax. 2020-04-05.
  2. "22.1 Organs and Structures of the Respiratory System". Anatomy and Physiology - Organs and Structures of the Respiratory System. OpenStax. 2020-04-05.
  3. Bahr, Diane (2010-05-15). Nobody Ever Told Me (Or My Mother) That!. Sensory World. p. 10. ISBN   9781935567202.
  4. Higashiyama, Hiroki; Koyabu, Daisuke; Hirasawa, Tatsuya; Werneburg, Ingmar; Kuratani, Shigeru; Kurihara, Hiroki (November 2, 2021). "Mammalian face as an evolutionary novelty". PNAS. 118 (44): e2111876118. Bibcode:2021PNAS..11811876H. doi: 10.1073/pnas.2111876118 . PMC   8673075 . PMID   34716275. S2CID   240228857.
  5. "Mammals' noses come from reptiles' jaws: Evolutionary development of facial bones". Phys.org. November 1, 2021.
  6. "Your Nose, the Guardian of Your Lungs". Boston Medical Center . Retrieved 2020-06-29.
  7. "22.1 Organs and Structures of the Respiratory System". Anatomy and Physiology - Organs and Structures of the Respiratory System. OpenStax. 2020-04-05.
  8. Dijkgraaf, S. (1978). Vergelijkende dierfysiologie; Bohn: Scheltema en Holkema, ISBN   90-313-0322-4 [ page needed ]
  9. 1 2 3 4 5 6 7 Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 453–458. ISBN   0-03-910284-X.
  10. "Will Fish Lose Their Sense of Smell in Acidic Oceans?". 2018-08-07.
  11. Janvier, Philippe (2013). "Led by the nose". Nature. 493 (7431): 169–170. doi:10.1038/nature11766. PMID   23254939. S2CID   205232053.