An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral. [1] [2] The behavior of Fresnel integrals can be illustrated by an Euler spiral, a connection first made by Marie Alfred Cornu in 1874. [3] Euler's spiral is a type of superspiral that has the property of a monotonic curvature function. [4]
The Euler spiral has applications to diffraction computations. They are also widely used in railway and highway engineering to design transition curves between straight and curved sections of railways or roads. A similar application is also found in photonic integrated circuits. The principle of linear variation of the curvature of the transition curve between a tangent and a circular curve defines the geometry of the Euler spiral:
The spiral has multiple names reflecting its discovery and application in multiple fields. The three major arenas were elastic springs ("Euler spiral", 1744), graphical computations in light diffraction ("Cornu spiral", 1874), and railway transitions ("the railway transition spiral", 1890). [2]
Leonhard Euler's work on the spiral came after James Bernoulli posed a problem in the theory of elasticity: what shape must a pre-curved wire spring be in such that, when flattened by pressing on the free end, it becomes a straight line? Euler established the properties of the spiral in 1744, noting at that time that the curve must have two limits, points that the curve wraps around and around but never reaches. Thirty-eight years later, in 1781, he reported his discovery of the formula for the limit (by "happy chance"). [2]
Augustin Fresnel, working in 1818 on the diffraction of light, developed the Fresnel integral that defines the same spiral. He was unaware of Euler's integrals or the connection to the theory of elasticity. In 1874, Alfred Marie Cornu showed that diffraction intensity could be read off a graph of the spiral by squaring the distance between two points on the graph. In his biographical sketch of Cornu, Henri Poincaré praised the advantages of the "spiral of Cornu" over the "unpleasant multitude of hairy integral formulas". Ernesto Cesàro chose to name the same curve "clothoid" after Clotho, one of the three Fates who spin the thread of life in Greek mythology. [2]
The third independent discovery occurred in the 1800's when various railway engineers sought a formula for gradual curvature in track shape. By 1880 Arthur Newell Talbot worked out the integral formulas and their solution, which he called the "railway transition spiral". The connection to Euler's work was not made until 1922. [2]
Unaware of the solution of the geometry by Euler, William Rankine cited the cubic curve (a polynomial curve of degree 3), which is an approximation of the Euler spiral for small angular changes in the same way that a parabola is an approximation to a circular curve.[ citation needed ]
To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force). If a vehicle traveling on a straight path were to suddenly transition to a tangential circular path, it would require centripetal acceleration suddenly switching at the tangent point from zero to the required value; this would be difficult to achieve (think of a driver instantly moving the steering wheel from straight line to turning position, and the car actually doing it), putting mechanical stress on the vehicle's parts, and causing much discomfort (due to lateral jerk).
On early railroads this instant application of lateral force was not an issue since low speeds and wide-radius curves were employed (lateral forces on the passengers and the lateral sway was small and tolerable). As speeds of rail vehicles increased over the years, it became obvious that an easement is necessary, so that the centripetal acceleration increases smoothly with the traveled distance. Given the expression of centripetal acceleration v2/r, the obvious solution is to provide an easement curve whose curvature, 1/R, increases linearly with the traveled distance.
In optics, the term Cornu spiral is used. [5] : 432 The Cornu spiral can be used to describe a diffraction pattern. [6] Consider a plane wave with phasor amplitude E0e−jkz which is diffracted by a "knife edge" of height h above x = 0 on the z = 0 plane. Then the diffracted wave field can be expressed as where Fr(x) is the Fresnel integral function, which forms the Cornu spiral on the complex plane.
So, to simplify the calculation of plane wave attenuation as it is diffracted from the knife-edge, one can use the diagram of a Cornu spiral by representing the quantities Fr(a) − Fr(b) as the physical distances between the points represented by Fr(a) and Fr(b) for appropriate a and b. This facilitates a rough computation of the attenuation of the plane wave by the knife edge of height h at a location (x, z) beyond the knife edge.
Bends with continuously varying radius of curvature following the Euler spiral are also used to reduce losses in photonic integrated circuits, either in singlemode waveguides, [7] [8] to smoothen the abrupt change of curvature and suppress coupling to radiation modes, or in multimode waveguides, [9] in order to suppress coupling to higher order modes and ensure effective singlemode operation. A pioneering and very elegant application of the Euler spiral to waveguides had been made as early as 1957, [10] with a hollow metal waveguide for microwaves. There the idea was to exploit the fact that a straight metal waveguide can be physically bent to naturally take a gradual bend shape resembling an Euler spiral.
In the path integral formulation of quantum mechanics, the probability amplitude for propagation between two points can be visualized by connecting action phase arrows for each time step between the two points. The arrows spiral around each endpoint forming what is termed a Cornu spiral. [11]
Motorsport author Adam Brouillard has shown the Euler spiral's use in optimizing the racing line during the corner entry portion of a turn. [12]
Raph Levien has released Spiro as a toolkit for curve design, especially font design, in 2007 [13] [14] under a free licence. This toolkit has been implemented quite quickly afterwards in the font design tool Fontforge and the digital vector drawing Inkscape.
Cutting a sphere along a spiral with width 1/N and flattening out the resulting shape yields an Euler spiral when n tends to the infinity. [15] If the sphere is the globe, this produces a map projection whose distortion tends to zero as n tends to the infinity. [16]
Natural shapes of rats' whiskers are well approximated by segments of Euler spirals; for a single rat all of the whiskers can be approximated as segments of the same spiral. [17] The two parameters of the Cesàro equation for an Euler spiral segment might give insight into the keratinization mechanism of whisker growth. [18]
R | Radius of curvature |
Rc | Radius of circular curve at the end of the spiral |
θ | Angle of curve from beginning of spiral (infinite R) to a particular point on the spiral. This can also be measured as the angle between the initial tangent and the tangent at the concerned point. |
θs | Angle of full spiral curve |
L, s | Length measured along the spiral curve from its initial position |
Ls, so | Length of spiral curve |
The graph on the right illustrates an Euler spiral used as an easement (transition) curve between two given curves, in this case a straight line (the negative x axis) and a circle. The spiral starts at the origin in the positive x direction and gradually turns anticlockwise to osculate the circle.
The spiral is a small segment of the above double-end Euler spiral in the first quadrant.
From the definition of the curvature, i.e., We write in the format, where or thus Now If Then Thus
If a = 1, which is the case for normalized Euler curve, then the Cartesian coordinates are given by Fresnel integrals (or Euler integrals):
For a given Euler curve with: or then where
The process of obtaining solution of (x, y) of an Euler spiral can thus be described as:
In the normalization process, Then
Generally the normalization reduces L′ to a small value (less than 1) and results in good converging characteristics of the Fresnel integral manageable with only a few terms (at a price of increased numerical instability of the calculation, especially for bigger θ values.).
Given: Then and
We scale down the Euler spiral by √60000, i.e. 100√6 to normalized Euler spiral that has: and
The two angles θs are the same. This thus confirms that the original and normalized Euler spirals are geometrically similar. The locus of the normalized curve can be determined from Fresnel Integral, while the locus of the original Euler spiral can be obtained by scaling up or denormalizing.
Normalized Euler spirals can be expressed as: or expressed as power series:
The normalized Euler spiral will converge to a single point in the limit as the parameter L approaches infinity, which can be expressed as:
Normalized Euler spirals have the following properties: and
Note that 2RcLs = 1 also means 1/Rc = 2Ls, in agreement with the last mathematical statement.
A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of Archimedes). It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be described by the equation with real number b. Changing the parameter b controls the distance between loops.
In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.
A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.
A helix is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called a helicoid.
A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral and the logarithmic spiral. Fermat spirals are named after Pierre de Fermat.
The Fresnel integralsS(x) and C(x) are two transcendental functions named after Augustin-Jean Fresnel that are used in optics and are closely related to the error function (erf). They arise in the description of near-field Fresnel diffraction phenomena and are defined through the following integral representations:
A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
In mathematics, an involute is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve.
In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.
Arc length is the distance between two points along a section of a curve.
Special affine curvature, also known as the equiaffine curvature or affine curvature, is a particular type of curvature that is defined on a plane curve that remains unchanged under a special affine transformation. The curves of constant equiaffine curvature k are precisely all non-singular plane conics. Those with k > 0 are ellipses, those with k = 0 are parabolae, and those with k < 0 are hyperbolae.
In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.
In algebraic geometry, the sinusoidal spirals are a family of curves defined by the equation in polar coordinates
The lituus spiral is a spiral in which the angle θ is inversely proportional to the square of the radius r.