Jerk (physics)

Last updated
Jerk
Time derivatives of position.svg
Time-derivatives of position, including jerk
Common symbols
j, j, ȷ
In SI base units m/s 3
Dimension LT−3

In physics, jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

Contents

Expressions

As a vector, jerk j can be expressed as the first time derivative of acceleration, second time derivative of velocity, and third time derivative of position:

Where:

Third-order differential equations of the form

are sometimes called jerk equations. When converted to an equivalent system of three ordinary first-order non-linear differential equations, jerk equations are the minimal setting for solutions showing chaotic behaviour. This condition generates mathematical interest in jerk systems. Systems involving fourth-order derivatives or higher are accordingly called hyperjerk systems. [1]

Physiological effects and human perception

Human body position is controlled by balancing the forces of antagonistic muscles. In balancing a given force, such as holding up a weight, the postcentral gyrus establishes a control loop to achieve the desired equilibrium. If the force changes too quickly, the muscles cannot relax or tense fast enough and overshoot in either direction, causing a temporary loss of control. The reaction time for responding to changes in force depends on physiological limitations and the attention level of the brain: an expected change will be stabilized faster than a sudden decrease or increase of load.

To avoid vehicle passengers losing control over body motion and getting injured, it is necessary to limit the exposure to both the maximum force (acceleration) and maximum jerk, since time is needed to adjust muscle tension and adapt to even limited stress changes. Sudden changes in acceleration can cause injuries such as whiplash. [2] Excessive jerk may also result in an uncomfortable ride, even at levels that do not cause injury. Engineers expend considerable design effort minimizing "jerky motion" on elevators, trams, and other conveyances.

For example, consider the effects of acceleration and jerk when riding in a car:

Force, acceleration, and jerk

For a constant mass m, acceleration a is directly proportional to force F according to Newton's second law of motion:

In classical mechanics of rigid bodies, there are no forces associated with the derivatives of acceleration; however, physical systems experience oscillations and deformations as a result of jerk. In designing the Hubble Space Telescope, NASA set limits on both jerk and jounce. [3]

The Abraham–Lorentz force is the recoil force on an accelerating charged particle emitting radiation. This force is proportional to the particle's jerk and to the square of its charge. The Wheeler–Feynman absorber theory is a more advanced theory, applicable in a relativistic and quantum environment, and accounting for self-energy.

In an idealized setting

Discontinuities in acceleration do not occur in real-world environments because of deformation, quantum mechanics effects, and other causes. However, a jump-discontinuity in acceleration and, accordingly, unbounded jerk are feasible in an idealized setting, such as an idealized point mass moving along a piecewise smooth, whole continuous path. The jump-discontinuity occurs at points where the path is not smooth. Extrapolating from these idealized settings, one can qualitatively describe, explain and predict the effects of jerk in real situations.

Jump-discontinuity in acceleration can be modeled using a Dirac delta function in jerk, scaled to the height of the jump. Integrating jerk over time across the Dirac delta yields the jump-discontinuity.

For example, consider a path along an arc of radius r, which tangentially connects to a straight line. The whole path is continuous, and its pieces are smooth. Now assume a point particle moves with constant speed along this path, so its tangential acceleration is zero. The centripetal acceleration given by v2/r is normal to the arc and inward. When the particle passes the connection of pieces, it experiences a jump-discontinuity in acceleration given by v2/r, and it undergoes a jerk that can be modeled by a Dirac delta, scaled to the jump-discontinuity.

For a more tangible example of discontinuous acceleration, consider an ideal spring–mass system with the mass oscillating on an idealized surface with friction. The force on the mass is equal to the vector sum of the spring force and the kinetic frictional force. When the velocity changes sign (at the maximum and minimum displacements), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses direction with velocity. The jump in acceleration equals the force on the mass divided by the mass. That is, each time the mass passes through a minimum or maximum displacement, the mass experiences a discontinuous acceleration, and the jerk contains a Dirac delta until the mass stops. The static friction force adapts to the residual spring force, establishing equilibrium with zero net force and zero velocity.

Consider the example of a braking and decelerating car. The brake pads generate kinetic frictional forces and constant braking torques on the disks (or drums) of the wheels. Rotational velocity decreases linearly to zero with constant angular deceleration. The frictional force, torque, and car deceleration suddenly reach zero, which indicates a Dirac delta in physical jerk. The Dirac delta is smoothed down by the real environment, the cumulative effects of which are analogous to damping of the physiologically perceived jerk. This example neglects the effects of tire sliding, suspension dipping, real deflection of all ideally rigid mechanisms, etc.

Another example of significant jerk, analogous to the first example, is the cutting of a rope with a particle on its end. Assume the particle is oscillating in a circular path with non-zero centripetal acceleration. When the rope is cut, the particle's path changes abruptly to a straight path, and the force in the inward direction changes suddenly to zero. Imagine a monomolecular fiber cut by a laser; the particle would experience very high rates of jerk because of the extremely short cutting time.

In rotation

Timing diagram over one revolution for angle, angular velocity, angular acceleration, and angular jerk Chronogrammes croix malte 4 branches complet EN.svg
Timing diagram over one revolution for angle, angular velocity, angular acceleration, and angular jerk

Consider a rigid body rotating about a fixed axis in an inertial reference frame. If its angular position as a function of time is θ(t), the angular velocity, acceleration, and jerk can be expressed as follows:

Angular acceleration equals the torque acting on the body, divided by the body's moment of inertia with respect to the momentary axis of rotation. A change in torque results in angular jerk.

The general case of a rotating rigid body can be modeled using kinematic screw theory, which includes one axial vector, angular velocity Ω(t), and one polar vector, linear velocity v(t). From this, the angular acceleration is defined as

and the angular jerk is given by

taking the angular acceleration from Angular acceleration#Particle in three dimensions as

, we obtain

replacing we can have the last item as

, and we finally get

or vice versa, replacing with :

Animation showing a four-position external Geneva drive in operation Animiertes Prinzip Malteserkreuzgetriebe 3D.gif
Animation showing a four-position external Geneva drive in operation

For example, consider a Geneva drive, a device used for creating intermittent rotation of a driven wheel (the blue wheel in the animation) by continuous rotation of a driving wheel (the red wheel in the animation). During one cycle of the driving wheel, the driven wheel's angular position θ changes by 90 degrees and then remains constant. Because of the finite thickness of the driving wheel's fork (the slot for the driving pin), this device generates a discontinuity in the angular acceleration α, and an unbounded angular jerk ζ in the driven wheel.

Jerk does not preclude the Geneva drive from being used in applications such as movie projectors and cams. In movie projectors, the film advances frame-by-frame, but the projector operation has low noise and is highly reliable because of the low film load (only a small section of film weighing a few grams is driven), the moderate speed (2.4 m/s), and the low friction.

Dual cam drives
Cames conjuguees rotation intermittente un sixieme de tour.svg
1/6 per revolution
Cames conjuguees rotation intermittente un tiers de tour.svg
1/3 per revolution

With cam drive systems, use of a dual cam can avoid the jerk of a single cam; however, the dual cam is bulkier and more expensive. The dual-cam system has two cams on one axle that shifts a second axle by a fraction of a revolution. The graphic shows step drives of one-sixth and one-third rotation per one revolution of the driving axle. There is no radial clearance because two arms of the stepped wheel are always in contact with the double cam. Generally, combined contacts may be used to avoid the jerk (and wear and noise) associated with a single follower (such as a single follower gliding along a slot and changing its contact point from one side of the slot to the other can be avoided by using two followers sliding along the same slot, one side each).

In elastically deformable matter

Compression wave patterns
Onde compression impulsion 1d 30 petit.gif
Plane wave
Ondes cisaillement 2d 20 petit.gif
Cylindrical symmetry

An elastically deformable mass deforms under an applied force (or acceleration); the deformation is a function of its stiffness and the magnitude of the force. If the change in force is slow, the jerk is small, and the propagation of deformation is considered instantaneous as compared to the change in acceleration. The distorted body acts as if it were in a quasistatic regime, and only a changing force (nonzero jerk) can cause propagation of mechanical waves (or electromagnetic waves for a charged particle); therefore, for nonzero to high jerk, a shock wave and its propagation through the body should be considered.

The propagation of deformation is shown in the graphic "Compression wave patterns" as a compressional plane wave through an elastically deformable material. Also shown, for angular jerk, are the deformation waves propagating in a circular pattern, which causes shear stress and possibly other modes of vibration. The reflection of waves along the boundaries cause constructive interference patterns (not pictured), producing stresses that may exceed the material's limits. The deformation waves may cause vibrations, which can lead to noise, wear, and failure, especially in cases of resonance.

Pole with massive top Acceleration et deformation elastique.svg
Pole with massive top

The graphic captioned "Pole with massive top" shows a block connected to an elastic pole and a massive top. The pole bends when the block accelerates, and when the acceleration stops, the top will oscillate (damped) under the regime of pole stiffness. One could argue that a greater (periodic) jerk might excite a larger amplitude of oscillation because small oscillations are damped before reinforcement by a shock wave. One can also argue that a larger jerk might increase the probability of exciting a resonant mode because the larger wave components of the shock wave have higher frequencies and Fourier coefficients.

Sinusoidal acceleration profile Chronogrammes loi sinusoidale par partie en vitesse.svg
Sinusoidal acceleration profile

To reduce the amplitude of excited stress waves and vibrations, one can limit jerk by shaping motion and making the acceleration continuous with slopes as flat as possible. Due to limitations of abstract models, algorithms for reducing vibrations include higher derivatives, such as jounce, or suggest continuous regimes for both acceleration and jerk. One concept for limiting jerk is to shape acceleration and deceleration sinusoidally with zero acceleration in between (see graphic captioned "Sinusoidal acceleration profile"), making the speed appear sinusoidal with constant maximum speed. The jerk, however, will remain discontinuous at the points where acceleration enters and leaves the zero phases.

In the geometric design of roads and tracks

A track transition curve limits jerk. The transition is shown in red between the blue straight line and green arc. Easement curve.svg
A track transition curve limits jerk. The transition is shown in red between the blue straight line and green arc.

Roads and tracks are designed to limit the jerk caused by changes in their curvature. Design standards for high-speed rail vary from 0.2 m/s3 to 0.6 m/s3. [4] Track transition curves limit the jerk when transitioning from a straight line to a curve, or vice versa. Recall that in constant-speed motion along an arc, acceleration is zero in the tangential direction and nonzero in the inward normal direction. Transition curves gradually increase the curvature and, consequently, the centripetal acceleration.

An Euler spiral, the theoretically optimum transition curve, linearly increases centripetal acceleration and results in constant jerk (see graphic). In real-world applications, the plane of the track is inclined (cant) along the curved sections. The incline causes vertical acceleration, which is a design consideration for wear on the track and embankment. The Wiener Kurve (Viennese Curve) is a patented curve designed to minimize this wear. [5] [6]

Rollercoasters [2] are also designed with track transitions to limit jerk. When entering a loop, acceleration values can reach around 4g (40 m/s2), and riding in this high acceleration environment is only possible with track transitions. S-shaped curves, such as figure eights, also use track transitions for smooth rides.

In motion control

In motion control, the design focus is on straight, linear motion, with the need to move a system from one steady position to another (point-to-point motion). The design concern from a jerk perspective is vertical jerk; the jerk from tangential acceleration is effectively zero since linear motion is non-rotational.

Motion control applications include passenger elevators and machining tools. Limiting vertical jerk is considered essential for elevator riding convenience. [7] ISO 8100-34 [8] specifies measurement methods for elevator ride quality with respect to jerk, acceleration, vibration, and noise; however, the standard does not specify levels for acceptable or unacceptable ride quality. It is reported [9] that most passengers rate a vertical jerk of 2 m/s3 as acceptable and 6 m/s3 as intolerable. For hospitals, 0.7 m/s3 is the recommended limit.

A primary design goal for motion control is to minimize the transition time without exceeding speed, acceleration, or jerk limits. Consider a third-order motion-control profile with quadratic ramping and deramping phases in velocity (see figure).

This picture shows a schematic diagram of jerk, acceleration, and speed, assuming all three are limited in their magnitude, when linearly going from one point to another, which are sufficiently far apart to reach the respective maxima. Schematic diagram of Jerk, Acceleration, and Speed.svg
This picture shows a schematic diagram of jerk, acceleration, and speed, assuming all three are limited in their magnitude, when linearly going from one point to another, which are sufficiently far apart to reach the respective maxima.

This motion profile consists of the following seven segments:

  1. Acceleration build up — positive jerk limit; linear increase in acceleration to the positive acceleration limit; quadratic increase in velocity
  2. Upper acceleration limit — zero jerk; linear increase in velocity
  3. Acceleration ramp down — negative jerk limit; linear decrease in acceleration; (negative) quadratic increase in velocity, approaching the desired velocity limit
  4. Velocity limit — zero jerk; zero acceleration
  5. Deceleration build up — negative jerk limit; linear decrease in acceleration to the negative acceleration limit; (negative) quadratic decrease in velocity
  6. Lower deceleration limit — zero jerk; linear decrease in velocity
  7. Deceleration ramp down — positive jerk limit; linear increase in acceleration to zero; quadratic decrease in velocity; approaching the desired position at zero speed and zero acceleration

Segment four's time period (constant velocity) varies with distance between the two positions. If this distance is so small that omitting segment four would not suffice, then segments two and six (constant acceleration) could be equally reduced, and the constant velocity limit would not be reached. If this modification does not sufficiently reduce the crossed distance, then segments one, three, five, and seven could be shortened by an equal amount, and the constant acceleration limits would not be reached.

Other motion profile strategies are used, such as minimizing the square of jerk for a given transition time [10] and, as discussed above, sinusoidal-shaped acceleration profiles. Motion profiles are tailored for specific applications including machines, people movers, chain hoists, automobiles, and robotics.

In manufacturing

Jerk is an important consideration in manufacturing processes. Rapid changes in acceleration of a cutting tool can lead to premature tool wear and result in uneven cuts; consequently, modern motion controllers include jerk limitation features. In mechanical engineering, jerk, in addition to velocity and acceleration, is considered in the development of cam profiles because of tribological implications and the ability of the actuated body to follow the cam profile without chatter. [11] Jerk is often considered when vibration is a concern. A device that measures jerk is called a "jerkmeter".

Further derivatives

Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] However, time derivatives of position of higher order than four appear rarely. [14]

The terms snap, crackle, and popfor the fourth, fifth, and sixth derivatives of positionwere inspired by the advertising mascots Snap, Crackle, and Pop. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

In physics, angular acceleration is the time rate of change of angular velocity. Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration, involving a point particle and an external axis.

<span class="mw-page-title-main">Rigid body</span> Physical object which does not deform when forces or moments are exerted on it

In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.

<span class="mw-page-title-main">Rigid body dynamics</span> Study of the effects of forces on undeformable bodies

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

<span class="mw-page-title-main">Rotating reference frame</span> Concept in classical mechanics

A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

In classical mechanics, Appell's equation of motion is an alternative general formulation of classical mechanics described by Josiah Willard Gibbs in 1879 and Paul Émile Appell in 1900.

In classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The Euler acceleration, also known as azimuthal acceleration or transverse acceleration is that part of the absolute acceleration that is caused by the variation in the angular velocity of the reference frame.

In physics, the study of rigid body motion allows for several ways to define the acceleration of a body. The usual definition of acceleration entails following a single particle/point of a rigid body and observing its changes in velocity. Spatial acceleration entails looking at a fixed (unmoving) point in space and observing the change in velocity of the particles that pass through that point. This is similar to the definition of acceleration in fluid dynamics, where typically one measures velocity and/or acceleration at a fixed point inside a testing apparatus.

Linear motion, also called rectilinear motion, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with constant velocity ; and non-uniform linear motion, with variable velocity. The motion of a particle along a line can be described by its position , which varies with (time). An example of linear motion is an athlete running a 100-meter dash along a straight track.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

References

  1. Chlouverakis, Konstantinos E.; Sprott, J. C. (2006). "Chaotic hyperjerk systems" (PDF). Chaos, Solitons & Fractals. 28 (3): 739–746. Bibcode:2006CSF....28..739C. doi:10.1016/j.chaos.2005.08.019.
  2. 1 2 "How Things Work: Roller Coasters - The Tartan Online". Thetartan.org. 2007-04-16. Retrieved 2013-09-15.
  3. "Third derivative of position". math.ucr.edu. Retrieved 2019-09-08.
  4. High-Speed Rail Turnout Literature Review (PDF) (Report). U.S. Department of Transportation – Office of Research, Development, and Technology. August 2016. DOT/FRA/ORD-16/34. Retrieved 9 November 2023.
  5. https://depatisnet.dpma.de/DepatisNet/depatisnet?window=1&space=menu&content=treffer&action=pdf&docid=AT000000412975B [ dead link ]
  6. "Archived copy" (PDF). Archived from the original (PDF) on 2016-03-13. Retrieved 2014-08-17.{{cite web}}: CS1 maint: archived copy as title (link)
  7. "Archived copy" (PDF). Archived from the original (PDF) on 2014-08-26. Retrieved 2014-08-22.{{cite web}}: CS1 maint: archived copy as title (link)
  8. ISO 8100-34:2021. "Lifts for the transport of persons and goods -- Part 34: Measurement of lift ride quality". International Organization for Standardization. Retrieved 31 December 2014.{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. Howkins, Roger E. "Elevator Ride Quality - The Human Ride Experience". VFZ-Verlag für Zielgruppeninformationen GmbH & Co. KG. Archived from the original on 14 March 2015. Retrieved 31 December 2014.
  10. Hogan, Neville (1984). "An organizing principle for a class of voluntary movements". J. Neurosci. 4 (11): 2745–2754. doi: 10.1523/JNEUROSCI.04-11-02745.1984 . PMC   6564718 . PMID   6502203.
  11. Blair, G., "Making the Cam", Race Engine Technology 10, September–October 2005
  12. Thompson, Peter M. (March 2011). "Snap, Crackle, and Pop" (PDF). Proc of AIAA Southern California Aerospace Systems and Technology Conference. p. 1. Archived from the original (PDF) on 2017-03-04. Retrieved 29 February 2020. The common names for the first three derivatives are velocity, acceleration, and jerk. The not so common names for the next three derivatives are snap, crackle, and pop.
  13. 1 2 Visser, Matt (31 March 2004). "Jerk, snap and the cosmological equation of state". Classical and Quantum Gravity . 21 (11): 2603–2616. arXiv: gr-qc/0309109 . Bibcode:2004CQGra..21.2603V. doi:10.1088/0264-9381/21/11/006. ISSN   0264-9381. S2CID   10468158. Snap [the fourth time derivative] is also sometimes called jounce. The fifth and sixth time derivatives are sometimes somewhat facetiously referred to as crackle and pop.
  14. Gragert, Stephanie; Gibbs, Philip (November 1998). "What is the term used for the third derivative of position?". Usenet Physics and Relativity FAQ. Math Dept., University of California, Riverside . Retrieved 2015-10-24.