List of equations in classical mechanics

Last updated

Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of reference. The point of concurrency of the three axes is known as the origin of the particular space. [3]

Contents

Classical mechanics utilises many equations as well as other mathematical conceptswhich relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.

This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).

Classical mechanics

Mass and inertia

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric mass densityλ or μ (especially in acoustics, see below) for Linear, σ for surface, ρ for volume.

kg mn, n = 1, 2, 3M Ln
Moment of mass [5] m (No common symbol)Point mass:

Discrete masses about an axis :

Continuum of mass about an axis :

kg mM L
Center of mass rcom

(Symbols vary)

i-th moment of mass

Discrete masses:

Mass continuum:

mL
2-Body reduced massm12, μ Pair of masses = m1 and m2kgM
Moment of inertia (MOI)IDiscrete Masses:

Mass continuum:

kg m2M L2

Derived kinematic quantities

Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a. Kinematics.svg
Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Velocity vm s−1L T−1
Acceleration am s−2L T−2
Jerk jm s−3L T−3
Jounce sm s−4L T−4
Angular velocity ωrad s−1T−1
Angular Acceleration αrad s−2T−2
Angular jerk ζrad s−3T−3

Derived dynamic quantities

Angular momenta of a classical object.

Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point,

right: extrinsic orbital angular momentum L about an axis,

top: the moment of inertia tensor I and angular velocity o (L is not always parallel to o)

bottom: momentum p and its radial position r from the axis.

The total angular momentum (spin + orbital) is J. Classical angular momentum.svg
Angular momenta of a classical object.

Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point,

right: extrinsic orbital angular momentum L about an axis,

top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω)

bottom: momentum p and its radial position r from the axis.

The total angular momentum (spin + orbital) is J.
Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Momentum pkg m s−1M L T−1
Force FN = kg m s−2M L T−2
Impulse J, Δp, Ikg m s−1M L T−1
Angular momentum about a position point r0,L, J, S

Most of the time we can set r0 = 0 if particles are orbiting about axes intersecting at a common point.

kg m2 s−1M L2 T−1
Moment of a force about a position point r0,

Torque

τ, MN m = kg m2 s−2M L2 T−2
Angular impulseΔL (no common symbol)kg m2 s−1M L2 T−1

General energy definitions

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Mechanical work due to a Resultant ForceWJ = N m = kg m2 s−2M L2 T−2
Work done ON mechanical system, Work done BYWON, WBYJ = N m = kg m2 s−2M L2 T−2
Potential energy φ, Φ, U, V, EpJ = N m = kg m2 s−2M L2 T−2
Mechanical power PW = J s−1M L2 T−3

Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:

Generalized mechanics

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Generalized coordinates q, Qvaries with choicevaries with choice
Generalized velocities varies with choicevaries with choice
Generalized momenta p, Pvaries with choicevaries with choice
Lagrangian L

where and p = p(t) are vectors of the generalized coords and momenta, as functions of time

JM L2 T−2
Hamiltonian HJM L2 T−2
Action, Hamilton's principal functionS, J sM L2 T−1

Kinematics

In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use θ, but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector

defines the axis of rotation, = unit vector in direction of r, = unit vector tangential to the angle.

TranslationRotation
Velocity Average:

Instantaneous:

Angular velocity
Rotating rigid body:
Acceleration Average:

Instantaneous:

Angular acceleration

Rotating rigid body:

Jerk Average:

Instantaneous:

Angular jerk

Rotating rigid body:

Dynamics

TranslationRotation
Momentum Momentum is the "amount of translation"

For a rotating rigid body:

Angular momentum

Angular momentum is the "amount of rotation":

and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not.

In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction.

Force and Newton's 2nd law Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:

For a number of particles, the equation of motion for one particle i is: [7]

where pi = momentum of particle i, Fij = force on particle iby particle j, and FE = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself.

Torque

Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:

Likewise, for a number of particles, the equation of motion for one particle i is: [9]

YankYank is rate of change of force:

For constant mass, it becomes;

Rotatum

Rotatum Ρ is also called moment of a Yank, because it is the rotational analogue to yank:

Impulse Impulse is the change in momentum:

For constant force F:

Twirl/angular impulse is the change in angular momentum:

For constant torque τ:

Precession

The precession angular speed of a spinning top is given by:

where w is the weight of the spinning flywheel.

Energy

The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:

General work-energy theorem (translation and rotation)

The work done W by an external agent which exerts a force F (at r) and torque τ on an object along a curved path C is:

where θ is the angle of rotation about an axis defined by a unit vector n.

Kinetic energy

The change in kinetic energy for an object initially traveling at speed and later at speed is:

Elastic potential energy

For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is

where r2 and r1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

Euler's equations for rigid body dynamics

Euler also worked out analogous laws of motion to those of Newton, see Euler's laws of motion. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is: [10]

where I is the moment of inertia tensor.

General planar motion

The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,

the following general results apply to the particle.

KinematicsDynamics
Position
Velocity
Momentum

Angular momenta

Acceleration
The centripetal force is

where again m is the mass moment, and the Coriolis force is

The Coriolis acceleration and force can also be written:

Central force motion

For a massive body moving in a central potential due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:

Equations of motion (constant acceleration)

These equations can be used only when acceleration is constant. If acceleration is not constant then the general calculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).

Linear motionAngular motion

Galilean frame transforms

For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame traveling at constant velocity - including zero) to another is the Galilean transform.

Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative accelerations.

Motion of entitiesInertial framesAccelerating frames
Translation

V = Constant relative velocity between two inertial frames F and F'.
A = (Variable) relative acceleration between two accelerating frames F and F'.

Relative position

Relative velocity

Equivalent accelerations

Relative accelerations

Apparent/fictitious forces

Rotation

Ω = Constant relative angular velocity between two frames F and F'.
Λ = (Variable) relative angular acceleration between two accelerating frames F and F'.

Relative angular position

Relative velocity

Equivalent accelerations

Relative accelerations

Apparent/fictitious torques

Transformation of any vector T to a rotating frame

Mechanical oscillators

SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion, simple harmonic oscillator and damped harmonic oscillator respectively.

Equations of motion
Physical situationNomenclatureTranslational equationsAngular equations
SHM
  • x = Transverse displacement
  • θ = Angular displacement
  • A = Transverse amplitude
  • Θ = Angular amplitude

Solution:

Solution:

Unforced DHM
  • b = damping constant
  • κ = torsion constant

Solution (see below for ω'):

Resonant frequency:

Damping rate:

Expected lifetime of excitation:

Solution:

Resonant frequency:

Damping rate:

Expected lifetime of excitation:

Angular frequencies
Physical situationNomenclatureEquations
Linear undamped unforced SHO
  • k = spring constant
  • m = mass of oscillating bob
Linear unforced DHO
  • k = spring constant
  • b = Damping coefficient
Low amplitude angular SHO
  • I = Moment of inertia about oscillating axis
  • κ = torsion constant
Low amplitude simple pendulum
  • L = Length of pendulum
  • g = Gravitational acceleration
  • Θ = Angular amplitude
Approximate value

Exact value can be shown to be:

Energy in mechanical oscillations
Physical situationNomenclatureEquations
SHM energy
  • T = kinetic energy
  • U = potential energy
  • E = total energy
Potential energy

Maximum value at x = A:

Kinetic energy

Total energy

DHM energy

See also

Notes

  1. Mayer, Sussman & Wisdom 2001 , p. xiii
  2. Berkshire & Kibble 2004 , p. 1
  3. Berkshire & Kibble 2004 , p. 2
  4. Arnold 1989 , p. v
  5. "Section: Moments and center of mass".
  6. R.P. Feynman; R.B. Leighton; M. Sands (1964). Feynman's Lectures on Physics (volume 2). Addison-Wesley. pp. 31–7. ISBN   978-0-201-02117-2.
  7. "Relativity, J.R. Forshaw 2009"
  8. "Mechanics, D. Kleppner 2010"
  9. "Relativity, J.R. Forshaw 2009"
  10. "Relativity, J.R. Forshaw 2009"

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Pseudovector representing an objects change in orientation with respect to time

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Rigid body dynamics</span> Study of the effects of forces on undeformable bodies

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial, that is frames which are linearly accelerating or rotating.

<span class="mw-page-title-main">Rotating reference frame</span> Concept in classical mechanics

A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

In classical mechanics, Appell's equation of motion is an alternative general formulation of classical mechanics described by Josiah Willard Gibbs in 1879 and Paul Émile Appell in 1900.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

Mechanics of planar particle motion is the analysis of the motion of particles gravitationally attracted to one another observed from non-inertial reference frames and the generalization of this problem to planetary motion. This type of analysis is closely related to centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. The mechanics of planar particle motion fall in the general field of analytical dynamics, and helps determining orbits from the given force laws. This article is focused more on the kinematic issues surrounding planar motion, which are the determination of the forces necessary to result in a certain trajectory given the particle trajectory.

References