List of relativistic equations

Last updated

Following is a list of the frequently occurring equations in the theory of special relativity.

Contents

Postulates of Special Relativity

To derive the equations of special relativity, one must start with two other

  1. The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
  2. The speed of light in a perfect classical vacuum () is measured to be the same by all observers in inertial frames and is, moreover, finite but nonzero. This speed acts as a supremum for the speed of local transmission of information in the universe.

In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum. Thus, a more accurate description would refer to rather than the speed of light per se. However, light and other massless particles do theoretically travel at under vacuum conditions and experiment has nonfalsified this notion with fairly high precision. Regardless of whether light itself does travel at , though does act as such a supremum, and that is the assumption which matters for Relativity.

From these two postulates, all of special relativity follows.

In the following, the relative velocity v between two inertial frames is restricted fully to the x-direction, of a Cartesian coordinate system.

Kinematics

Lorentz transformation

The following notations are used very often in special relativity:

Lorentz factor

where and v is the relative velocity between two inertial frames.

For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞.

Time dilation (different times t and t' at the same position x in same inertial frame)

In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location. So, above, the emission and reception of the light both took place in the vehicle's frame, making the time that an observer in the vehicle's frame would measure the proper time.

Length contraction (different positions x and x' at the same instant t in the same inertial frame)

This is the formula for length contraction. As there existed a proper time for time dilation, there exists a proper length for length contraction, which in this case is . The proper length of an object is the length of the object in the frame in which the object is at rest. Also, this contraction only affects the dimensions of the object which are parallel to the relative velocity between the object and observer. Thus, lengths perpendicular to the direction of motion are unaffected by length contraction.

Lorentz transformation
Velocity addition

The metric and four-vectors

In what follows, bold sans serif is used for 4-vectors while normal bold roman is used for ordinary 3-vectors.

Inner product (i.e. notion of length)

where is known as the metric tensor. In special relativity, the metric tensor is the Minkowski metric:

Space-time interval

In the above, ds2 is known as the spacetime interval. This inner product is invariant under the Lorentz transformation, that is,

The sign of the metric and the placement of the ct, ct', cdt, and cdt time-based terms can vary depending on the author's choice. For instance, many times the time-based terms are placed first in the four-vectors, with the spatial terms following. Also, sometimes η is replaced with −η, making the spatial terms produce negative contributions to the dot product or spacetime interval, while the time term makes a positive contribution. These differences can be used in any combination, so long as the choice of standards is followed completely throughout the computations performed.

Lorentz transforms

It is possible to express the above coordinate transformation via a matrix. To simplify things, it can be best to replace t, t, dt, and dt with ct, ct', cdt, and cdt, which has the dimensions of distance. So:

then in matrix form:

The vectors in the above transformation equation are known as four-vectors, in this case they are specifically the position four-vectors. In general, in special relativity, four-vectors can be transformed from one reference frame to another as follows:

In the above, and are the four-vector and the transformed four-vector, respectively, and Λ is the transformation matrix, which, for a given transformation is the same for all four-vectors one might want to transform. So can be a four-vector representing position, velocity, or momentum, and the same Λ can be used when transforming between the same two frames. The most general Lorentz transformation includes boosts and rotations; the components are complicated and the transformation requires spinors.

4-vectors and frame-invariant results

Invariance and unification of physical quantities both arise from four-vectors. [1] The inner product of a 4-vector with itself is equal to a scalar (by definition of the inner product), and since the 4-vectors are physical quantities their magnitudes correspond to physical quantities also.

Property/effect3-vector4-vectorInvariant result
Space-time events 3-position: r = (x1, x2, x3)

4-position: X = (ct, x1, x2, x3)


τ = proper time
χ = proper distance

Momentum-energy invariance

3-momentum: p = (p1, p2, p3)

4-momentum: P = (E/c, p1, p2, p3)

which leads to:

E = total energy
m = invariant mass

Velocity3-velocity: u = (u1, u2, u3)

4-velocity: U = (U0, U1, U2, U3)


Acceleration3-acceleration: a = (a1, a2, a3)

4-acceleration: A = (A0, A1, A2, A3)


Force3-force: f = (f1, f2, f3)

4-force: F = (F0, F1, F2, F3)


Doppler shift

General doppler shift:

Doppler shift for emitter and observer moving right towards each other (or directly away):

Doppler shift for emitter and observer moving in a direction perpendicular to the line connecting them:

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of vectors, or from contracting tensors of the theory. While the components of vectors and tensors are in general altered under Lorentz transformations, Lorentz scalars remain unchanged.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

<span class="mw-page-title-main">Wigner rotation</span>

In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

References

  1. Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Manchester Physics Series, John Wiley & Sons, 2009, ISBN   978-0-470-01460-8

Sources