List of equations in wave theory

Last updated

This article summarizes equations in the theory of waves.

Contents

Definitions

General fundamental quantities

A wave can be longitudinal where the oscillations are parallel (or antiparallel) to the propagation direction, or transverse where the oscillations are perpendicular to the propagation direction. These oscillations are characterized by a periodically time-varying displacement in the parallel or perpendicular direction, and so the instantaneous velocity and acceleration are also periodic and time varying in these directions. (the apparent motion of the wave due to the successive oscillations of particles or fields about their equilibrium positions) propagates at the phase and group velocities parallel or antiparallel to the propagation direction, which is common to longitudinal and transverse waves. Below oscillatory displacement, velocity and acceleration refer to the kinematics in the oscillating directions of the wave - transverse or longitudinal (mathematical description is identical), the group and phase velocities are separate.

Quantity (common name/s)(Common) symbol/sSI unitsDimension
Number of wave cyclesNdimensionlessdimensionless
(Oscillatory) displacementSymbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics). Most general purposes use y, ψ, Ψ. For generality here, A is used and can be replaced by any other symbol, since others have specific, common uses.

for longitudinal waves,
for transverse waves.

m[L]
(Oscillatory) displacement amplitude Any quantity symbol typically subscripted with 0, m or max, or the capitalized letter (if displacement was in lower case). Here for generality A0 is used and can be replaced.m[L]
(Oscillatory) velocity amplitudeV, v0, vm. Here v0 is used.m s−1[L][T]−1
(Oscillatory) acceleration amplitudeA, a0, am. Here a0 is used.m s−2[L][T]−2
Spatial position
Position of a point in space, not necessarily a point on the wave profile or any line of propagation
d, rm[L]
Wave profile displacement
Along propagation direction, distance travelled (path length) by one wave from the source point r0 to any point in space d (for longitudinal or transverse waves)
L, d, r


m[L]
Phase angle δ, ε, φraddimensionless

General derived quantities

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Wavelength λGeneral definition (allows for FM):

For non-FM waves this reduces to:

m[L]
Wavenumber, k-vector, Wave vector k, σTwo definitions are in use:


m−1[L]−1
Frequency f, νGeneral definition (allows for FM):

For non-FM waves this reduces to:

In practice N is set to 1 cycle and t = T = time period for 1 cycle, to obtain the more useful relation:

Hz = s−1[T]−1
Angular frequency/ pulsatanceωHz = s−1[T]−1
Oscillatory velocityv, vt, vLongitudinal waves:

Transverse waves:

m s−1[L][T]−1
Oscillatory accelerationa, atLongitudinal waves:

Transverse waves:

m s−2[L][T]−2
Path length difference between two wavesL, ΔL, Δx, Δrm[L]
Phase velocity vpGeneral definition:

In practice reduces to the useful form:

m s−1[L][T]−1
(Longitudinal) group velocity vgm s−1[L][T]−1
Time delay, time lag/leadΔts[T]
Phase difference δ, Δε, Δϕraddimensionless
Phase No standard symbol

Physically;
upper sign: wave propagation in +r direction
lower sign: wave propagation in r direction

Phase angle can lag if: ϕ > 0
or lead if: ϕ < 0.

raddimensionless

Relation between space, time, angle analogues used to describe the phase:

Modulation indices

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
AM index:
h, hAM

A = carrier amplitude
Am = peak amplitude of a component in the modulating signal

dimensionlessdimensionless
FM index:
hFM

Δf = max. deviation of the instantaneous frequency from the carrier frequency
fm = peak frequency of a component in the modulating signal

dimensionlessdimensionless
PM index:
hPM

Δϕ = peak phase deviation

dimensionlessdimensionless

Acoustics

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Acoustic impedanceZ

v = speed of sound, ρ = volume density of medium

kg m−2 s−1[M] [L]−2 [T]−1
Specific acoustic impedancez

S = surface area

kg s−1[M] [T]−1
Sound Level βdimensionlessdimensionless

Equations

In what follows n, m are any integers (Z = set of integers); .

Standing waves

Physical situationNomenclatureEquations
Harmonic frequenciesfn = nth mode of vibration, nth harmonic, (n-1)th overtone

Propagating waves

Sound waves

Physical situationNomenclatureEquations
Average wave powerP0 = Sound power due to source
Sound intensityΩ = Solid angle

Acoustic beat frequencyf1, f2 = frequencies of two waves (nearly equal amplitudes)
Doppler effect for mechanical waves
  • V = speed of sound wave in medium
  • f0 = Source frequency
  • fr = Receiver frequency
  • v0 = Source velocity
  • vr = Receiver velocity

upper signs indicate relative approach, lower signs indicate relative recession.

Mach cone angle (Supersonic shockwave, sonic boom)
  • v = speed of body
  • vs = local speed of sound
  • θ = angle between direction of travel and conic envelope of superimposed wavefronts
Acoustic pressure and displacement amplitudes
  • p0 = pressure amplitude
  • s0 = displacement amplitude
  • v = speed of sound
  • ρ = local density of medium
Wave functions for soundAcoustic beats

Sound displacement function

Sound pressure-variation

Gravitational waves

Gravitational radiation for two orbiting bodies in the low-speed limit. [1]

Physical situationNomenclatureEquations
Radiated power
  • P = Radiated power from system,
  • t = time,
  • r = separation between centres-of-mass
  • m1, m2 = masses of the orbiting bodies
Orbital radius decay
Orbital lifetimer0 = initial distance between the orbiting bodies

Superposition, interference, and diffraction

Physical situationNomenclatureEquations
Principle of superpositionN = number of waves
Resonance
  • ωd = driving angular frequency (external agent)
  • ωnat = natural angular frequency (oscillator)
Phase and interference
  • Δr = path length difference
  • φ = phase difference between any two successive wave cycles

Constructive interference

Destructive interference

Wave propagation

A common misconception occurs between phase velocity and group velocity (analogous to centres of mass and gravity). They happen to be equal in non-dispersive media. In dispersive media the phase velocity is not necessarily the same as the group velocity. The phase velocity varies with frequency.

The phase velocity is the rate at which the phase of the wave propagates in space.
The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the global profile". Each propagates at generally different speeds determined by the important function called the dispersion relation . The use of the explicit form ω(k) is standard, since the phase velocity ω/k and the group velocity dω/dk usually have convenient representations by this function.

Physical situationNomenclatureEquations
Idealized non-dispersive media
  • p = (any type of) Stress or Pressure,
  • ρ = Volume Mass Density,
  • F = Tension Force,
  • μ = Linear Mass Density of medium
Dispersion relation Implicit form

Explicit form

Amplitude modulation, AM
Frequency modulation, FM

General wave functions

Wave equations

Physical situationNomenclatureWave equationGeneral solution/s
Non-dispersive Wave Equation in 3dA = amplitude as function of position and time
Exponentially damped waveform
  • A0 = Initial amplitude at time t = 0
  • b = damping parameter
Korteweg–de Vries equation [2] α = constant

Sinusoidal solutions to the 3d wave equation

N different sinusoidal waves

Complex amplitude of wave n

Resultant complex amplitude of all N waves

Modulus of amplitude

The transverse displacements are simply the real parts of the complex amplitudes.

1-dimensional corollaries for two sinusoidal waves

The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.

WavefunctionNomenclatureSuperpositionResultant
Standing wave
Beats
Coherent interference

See also

Footnotes

  1. "Gravitational Radiation" (PDF). Archived from the original (PDF) on 2012-04-02. Retrieved 2012-09-15.
  2. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) 0-89573-752-3

Sources

Further reading

Related Research Articles

<span class="mw-page-title-main">Group velocity</span> Physical quantity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Phase velocity</span> Rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero. Waves are often described by a wave equation or a one-way wave equation for single wave propagation in a defined direction.

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

<span class="mw-page-title-main">Transverse wave</span> Moving wave that has oscillations perpendicular to the direction of the wave

In physics, a transverse wave is a wave that oscillates perpendicularly to the direction of the wave's advance. In contrast, a longitudinal wave travels in the direction of its oscillations. All waves move energy from place to place without transporting the matter in the transmission medium if there is one. Electromagnetic waves are transverse without requiring a medium. The designation “transverse” indicates the direction of the wave is perpendicular to the displacement of the particles of the medium through which it passes, or in the case of EM waves, the oscillation is perpendicular to the direction of the wave.

<span class="mw-page-title-main">Sine wave</span> Wave shaped like the sine function

A sine wave, sinusoidal wave, or sinusoid is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is simple harmonic motion; as rotation, it corresponds to uniform circular motion. Sine waves occur often in physics, including wind waves, sound waves, and light waves, such as monochromatic radiation. In engineering, signal processing, and mathematics, Fourier analysis decomposes general functions into a sum of sine waves of various frequencies, relative phases, and magnitudes.

<span class="mw-page-title-main">Wave packet</span> Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Any signal of a limited width in time or space requires many frequency components around a center frequency within a bandwidth inversely proportional to that width; even a gaussian function is considered a wave packet because its Fourier transform is a "packet" of waves of frequencies clustered around a central frequency. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change (dispersion) while propagating.

Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure, but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Envelope (waves)</span> Smooth curve outlining the extremes of an oscillating signal

In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.