In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar-.
For a given value of a hyperbolic function, the inverse hyperbolic function provides the corresponding hyperbolic angle measure, for example and Hyperbolic angle measure is the length of an arc of a unit hyperbola as measured in the Lorentzian plane (not the length of a hyperbolic arc in the Euclidean plane), and twice the area of the corresponding hyperbolic sector. This is analogous to the way circular angle measure is the arc length of an arc of the unit circle in the Euclidean plane or twice the area of the corresponding circular sector. Alternately hyperbolic angle is the area of a sector of the hyperbola Some authors call the inverse hyperbolic functions hyperbolic area functions. [1]
Hyperbolic functions occur in the calculation of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.
The earliest and most widely adopted symbols use the prefix arc- (that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.). For a unit hyperbola ("Lorentzian circle") in the Lorentzian plane (pseudo-Euclidean plane of signature (1, 1)) [2] or in the hyperbolic number plane, [3] the hyperbolic angle measure (argument to the hyperbolic functions) is indeed the arc length of a hyperbolic arc.
Also common is the notation etc., [4] [5] although care must be taken to avoid misinterpretations of the superscript −1 as an exponent. The standard convention is that or means the inverse function while or means the reciprocal Especially inconsistent is the conventional use of positive integer superscripts to indicate an exponent rather than function composition, e.g. conventionally means and not
Because the argument of hyperbolic functions is not the arc length of a hyperbolic arc in the Euclidean plane, some authors have condemned the prefix arc-, arguing that the prefix ar- (for area) or arg- (for argument) should be preferred. [6] Following this recommendation, the ISO 80000-2 standard abbreviations use the prefix ar- (that is: arsinh, arcosh, artanh, arsech, arcsch, arcoth).
In computer programming languages, inverse circular and hyperbolic functions are often named with the shorter prefix a- (asinh, etc.).
This article will consistently adopt the prefix ar- for convenience.
Since the hyperbolic functions are quadratic rational functions of the exponential function they may be solved using the quadratic formula and then written in terms of the natural logarithm.
For complex arguments, the inverse circular and hyperbolic functions, the square root, and the natural logarithm are all multi-valued functions.
These formulas can be derived in terms of the derivatives of hyperbolic functions. For example, if , then so
Expansion series can be obtained for the above functions:
An asymptotic expansion for arsinh is given by
As functions of a complex variable, inverse hyperbolic functions are multivalued functions that are analytic except at a finite number of points. For such a function, it is common to define a principal value, which is a single valued analytic function which coincides with one specific branch of the multivalued function, over a domain consisting of the complex plane in which a finite number of arcs (usually half lines or line segments) have been removed. These arcs are called branch cuts. The principal value of the multifunction is chosen at a particular point and values elsewhere in the domain of definition are defined to agree with those found by analytic continuation.
For example, for the square root, the principal value is defined as the square root that has a positive real part. This defines a single valued analytic function, which is defined everywhere, except for non-positive real values of the variables (where the two square roots have a zero real part). This principal value of the square root function is denoted in what follows. Similarly, the principal value of the logarithm, denoted in what follows, is defined as the value for which the imaginary part has the smallest absolute value. It is defined everywhere except for non-positive real values of the variable, for which two different values of the logarithm reach the minimum.
For all inverse hyperbolic functions, the principal value may be defined in terms of principal values of the square root and the logarithm function. However, in some cases, the formulas of § Definitions in terms of logarithms do not give a correct principal value, as giving a domain of definition which is too small and, in one case non-connected.
The principal value of the inverse hyperbolic sine is given by
The argument of the square root is a non-positive real number, if and only if z belongs to one of the intervals [i, +i∞) and (−i∞, −i] of the imaginary axis. If the argument of the logarithm is real, then it is positive. Thus this formula defines a principal value for arsinh, with branch cuts [i, +i∞) and (−i∞, −i]. This is optimal, as the branch cuts must connect the singular points i and −i to infinity.
The formula for the inverse hyperbolic cosine given in § Inverse hyperbolic cosine is not convenient, since similar to the principal values of the logarithm and the square root, the principal value of arcosh would not be defined for imaginary z. Thus the square root has to be factorized, leading to
The principal values of the square roots are both defined, except if z belongs to the real interval (−∞, 1]. If the argument of the logarithm is real, then z is real and has the same sign. Thus, the above formula defines a principal value of arcosh outside the real interval (−∞, 1], which is thus the unique branch cut.
The formulas given in § Definitions in terms of logarithms suggests
for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if z is real. For artanh, this argument is in the real interval (−∞, 0], if z belongs either to (−∞, −1] or to [1, ∞). For arcoth, the argument of the logarithm is in (−∞, 0], if and only if z belongs to the real interval [−1, 1].
Therefore, these formulas define convenient principal values, for which the branch cuts are (−∞, −1] and [1, ∞) for the inverse hyperbolic tangent, and [−1, 1] for the inverse hyperbolic cotangent.
In view of a better numerical evaluation near the branch cuts, some authors[ citation needed ] use the following definitions of the principal values, although the second one introduces a removable singularity at z = 0. The two definitions of differ for real values of with . The ones of differ for real values of with .
For the inverse hyperbolic cosecant, the principal value is defined as
It is defined except when the arguments of the logarithm and the square root are non-positive real numbers. The principal value of the square root is thus defined outside the interval [−i, i] of the imaginary line. If the argument of the logarithm is real, then z is a non-zero real number, and this implies that the argument of the logarithm is positive.
Thus, the principal value is defined by the above formula outside the branch cut, consisting of the interval [−i, i] of the imaginary line.
(At z = 0, there is a singular point that is included in the branch cut.)
Here, as in the case of the inverse hyperbolic cosine, we have to factorize the square root. This gives the principal value
If the argument of a square root is real, then z is real, and it follows that both principal values of square roots are defined, except if z is real and belongs to one of the intervals (−∞, 0] and [1, +∞). If the argument of the logarithm is real and negative, then z is also real and negative. It follows that the principal value of arsech is well defined, by the above formula outside two branch cuts, the real intervals (−∞, 0] and [1, +∞).
For z = 0, there is a singular point that is included in one of the branch cuts.
In the following graphical representation of the principal values of the inverse hyperbolic functions, the branch cuts appear as discontinuities of the color. The fact that the whole branch cuts appear as discontinuities, shows that these principal values may not be extended into analytic functions defined over larger domains. In other words, the above defined branch cuts are minimal.
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.
In mathematics, an elementary function is a function of a single variable that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.
In mathematics, the error function, often denoted by erf, is a function defined as:
In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In non-Euclidean geometry, the Poincaré half-plane model is a way of representing the hyperbolic plane using points in the familiar Euclidean plane. Specifically, each point in the hyperbolic plane is represented using a Euclidean point with coordinates whose coordinate is greater than zero, the upper half-plane, and a metric tensor called the Poincaré metric is adopted, in which the local scale is inversely proportional to the coordinate. Points on the -axis, whose coordinate is equal to zero, represent ideal points, which are outside the hyperbolic plane proper.
In statistics, the Fisher transformation of a Pearson correlation coefficient is its inverse hyperbolic tangent (artanh). When the sample correlation coefficient r is near 1 or -1, its distribution is highly skewed, which makes it difficult to estimate confidence intervals and apply tests of significance for the population correlation coefficient ρ. The Fisher transformation solves this problem by yielding a variable whose distribution is approximately normally distributed, with a variance that is stable over different values of r.
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.
In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.
In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:
In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called triply asymptotic triangles or trebly asymptotic triangles. The vertices are sometimes called ideal vertices. All ideal triangles are congruent.
In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,
In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.
The trigonometric functions for complex square matrices occur in solutions of second-order systems of differential equations. They are defined by the same Taylor series that hold for the trigonometric functions of complex numbers:
Another form of notation, arcsinh x, arccosh x, etc., is a practice to be condemned as these functions have nothing whatever to do with arc, but with area, as is demonstrated by their full Latin names, ¶ arsinh area sinus hyperbolicus ¶ arcosh area cosinus hyperbolicus, etc.Zeidler, Eberhard; Hackbusch, Wolfgang; Schwarz, Hans Rudolf (2004). "§ 0.2.13 The inverse hyperbolic functions". Oxford Users' Guide to Mathematics . Translated by Hunt, Bruce. Oxford University Press. p. 68. ISBN 0198507631.
The Latin names for the inverse hyperbolic functions are area sinus hyperbolicus, area cosinus hyperbolicus, area tangens hyperbolicus and area cotangens hyperbolicus (of x)..... Zeidler & al. use the notations arsinh, etc.; note that the quoted Latin names are back-formations, invented long after Neo-Latin ceased to be in common use in mathematical literature. Bronshtein, Ilja N.; Semendyayev, Konstantin A.; Musiol, Gerhard; Heiner, Mühlig (2007). "§ 2.10: Area Functions". Handbook of Mathematics (5th ed.). Springer. p. 91. doi:10.1007/978-3-540-72122-2. ISBN 978-3540721215.
The area functions are the inverse functions of the hyperbolic functions, i.e., the inverse hyperbolic functions. The functions sinh x, tanh x, and coth x are strictly monotone, so they have unique inverses without any restriction; the function cosh x has two monotonic intervals so we can consider two inverse functions. The name area refers to the fact that the geometric definition of the functions is the area of certain hyperbolic sectors ...Bacon, Harold Maile (1942). Differential and Integral Calculus. McGraw-Hill. p. 203.