There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine, or on the differential equation to which they are solutions.
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
In the case of angles smaller than a right angle, the following identities are direct consequences of above definitions through the division identity
They remain valid for angles greater than 90° and for negative angles.
Or
Two angles whose sum is π/2 radians (90 degrees) are complementary. In the diagram, the angles at vertices A and B are complementary, so we can exchange a and b, and change θ to π/2 − θ, obtaining:
Identity 1:
The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by .
Similarly
Identity 2:
The following accounts for all three reciprocal functions.
Proof 2:
Refer to the triangle diagram above. Note that by Pythagorean theorem.
Substituting with appropriate functions -
Rearranging gives:
Draw a horizontal line (the x-axis); mark an origin O. Draw a line from O at an angle above the horizontal line and a second line at an angle above that; the angle between the second line and the x-axis is .
Place P on the line defined by at a unit distance from the origin.
Let PQ be a line perpendicular to line OQ defined by angle , drawn from point Q on this line to point P. OQP is a right angle.
Let QA be a perpendicular from point A on the x-axis to Q and PB be a perpendicular from point B on the x-axis to P. OAQ and OBP are right angles.
Draw R on PB so that QR is parallel to the x-axis.
Now angle (because , making , and finally )
By substituting for and using the reflection identities of even and odd functions, we also get:
Using the figure above,
By substituting for and using the reflection identities of even and odd functions, we also get:
Also, using the complementary angle formulae,
From the sine and cosine formulae, we get
Dividing both numerator and denominator by , we get
Subtracting from , using ,
Similarly, from the sine and cosine formulae, we get
Then by dividing both numerator and denominator by , we get
Or, using ,
Using ,
From the angle sum identities, we get
and
The Pythagorean identities give the two alternative forms for the latter of these:
The angle sum identities also give
It can also be proved using Euler's formula
Squaring both sides yields
But replacing the angle with its doubled version, which achieves the same result in the left side of the equation, yields
It follows that
Expanding the square and simplifying on the left hand side of the equation gives
Because the imaginary and real parts have to be the same, we are left with the original identities
and also
The two identities giving the alternative forms for cos 2θ lead to the following equations:
The sign of the square root needs to be chosen properly—note that if 2π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.
For the tan function, the equation is:
Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to:
Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:
This also gives:
Similar manipulations for the cot function give:
If half circle (for example, , and are the angles of a triangle),
Proof: [1]
If quarter circle,
Proof:
Replace each of , , and with their complementary angles, so cotangents turn into tangents and vice versa.
Given
so the result follows from the triple tangent identity.
First, start with the sum-angle identities:
By adding these together,
Similarly, by subtracting the two sum-angle identities,
Let and ,
Substitute and
Therefore,
Similarly for cosine, start with the sum-angle identities:
Again, by adding and subtracting
Substitute and as before,
The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2π) of the whole circle, so its area is θ/2. We assume here that θ < π/2.
The area of triangle OAD is AB/2, or sin(θ)/2. The area of triangle OCD is CD/2, or tan(θ)/2.
Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π/2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have
For negative values of θ we have, by the symmetry of the sine function
Hence
and
In other words, the function sine is differentiable at 0, and its derivative is 1.
Proof: From the previous inequalities, we have, for small angles
Therefore,
Consider the right-hand inequality. Since
Multiply through by
Combining with the left-hand inequality:
Taking to the limit as
Therefore,
Proof:
The limits of those three quantities are 1, 0, and 1/2, so the resultant limit is zero.
Proof:
As in the preceding proof,
The limits of those three quantities are 1, 1, and 1/2, so the resultant limit is 1/2.
All these functions follow from the Pythagorean trigonometric identity. We can prove for instance the function
Proof:
We start from
Then we divide this equation (I) by
Then use the substitution :
Then we use the identity
And initial Pythagorean trigonometric identity proofed...
Similarly if we divide this equation (I) by
Then use the substitution :
Then we use the identity
And initial Pythagorean trigonometric identity proofed...
Let we guess that we have to prove:
Replacing (V) into (IV) :
So it's true: and guessing statement was true:
Now y can be written as x ; and we have [arcsin] expressed through [arctan]...
Similarly if we seek :...
From :...
And finally we have [arccos] expressed through [arctan]...
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates.
In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.
In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible.
In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by
Etendue or étendue is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor. It is a central concept in nonimaging optics.
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss.