Branch point

Last updated

In the mathematical field of complex analysis, a branch point of a multivalued function is a point such that if the function is -valued (has values) at that point, all of its neighborhoods contain a point that has more than values. [1] Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept.

Contents

Branch points fall into three broad categories: algebraic branch points, transcendental branch points, and logarithmic branch points. Algebraic branch points most commonly arise from functions in which there is an ambiguity in the extraction of a root, such as solving the equation for as a function of . Here the branch point is the origin, because the analytic continuation of any solution around a closed loop containing the origin will result in a different function: there is non-trivial monodromy. Despite the algebraic branch point, the function is well-defined as a multiple-valued function and, in an appropriate sense, is continuous at the origin. This is in contrast to transcendental and logarithmic branch points, that is, points at which a multiple-valued function has nontrivial monodromy and an essential singularity. In geometric function theory, unqualified use of the term branch point typically means the former more restrictive kind: the algebraic branch points. [2] In other areas of complex analysis, the unqualified term may also refer to the more general branch points of transcendental type.

Algebraic branch points

Let be a connected open set in the complex plane and a holomorphic function. If is not constant, then the set of the critical points of , that is, the zeros of the derivative , has no limit point in . So each critical point of lies at the center of a disc containing no other critical point of in its closure.

Let be the boundary of , taken with its positive orientation. The winding number of with respect to the point is a positive integer called the ramification index of . If the ramification index is greater than 1, then is called a ramification point of , and the corresponding critical value is called an (algebraic) branch point. Equivalently, is a ramification point if there exists a holomorphic function defined in a neighborhood of such that for integer .

Typically, one is not interested in itself, but in its inverse function. However, the inverse of a holomorphic function in the neighborhood of a ramification point does not properly exist, and so one is forced to define it in a multiple-valued sense as a global analytic function. It is common to abuse language and refer to a branch point of as a branch point of the global analytic function . More general definitions of branch points are possible for other kinds of multiple-valued global analytic functions, such as those that are defined implicitly. A unifying framework for dealing with such examples is supplied in the language of Riemann surfaces below. In particular, in this more general picture, poles of order greater than 1 can also be considered ramification points.

In terms of the inverse global analytic function , branch points are those points around which there is nontrivial monodromy. For example, the function has a ramification point at . The inverse function is the square root , which has a branch point at . Indeed, going around the closed loop , one starts at and . But after going around the loop to , one has . Thus there is monodromy around this loop enclosing the origin.

Transcendental and logarithmic branch points

Suppose that g is a global analytic function defined on a punctured disc around z0. Then g has a transcendental branch point if z0 is an essential singularity of g such that analytic continuation of a function element once around some simple closed curve surrounding the point z0 produces a different function element. [3]

An example of a transcendental branch point is the origin for the multi-valued function

for some integer k > 1. Here the monodromy group for a circuit around the origin is finite. Analytic continuation around k full circuits brings the function back to the original.

If the monodromy group is infinite, that is, it is impossible to return to the original function element by analytic continuation along a curve with nonzero winding number about z0, then the point z0 is called a logarithmic branch point. [4] This is so called because the typical example of this phenomenon is the branch point of the complex logarithm at the origin. Going once counterclockwise around a simple closed curve encircling the origin, the complex logarithm is incremented by 2πi. Encircling a loop with winding number w, the logarithm is incremented by 2πi w and the monodromy group is the infinite cyclic group .

Logarithmic branch points are special cases of transcendental branch points.

There is no corresponding notion of ramification for transcendental and logarithmic branch points since the associated covering Riemann surface cannot be analytically continued to a cover of the branch point itself. Such covers are therefore always unramified.

Examples

Branch cuts

Roughly speaking, branch points are the points where the various sheets of a multiple valued function come together. The branches of the function are the various sheets of the function. For example, the function w = z1/2 has two branches: one where the square root comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in the complex plane such that it is possible to define a single analytic branch of a multi-valued function on the plane minus that curve. Branch cuts are usually, but not always, taken between pairs of branch points.

Branch cuts allow one to work with a collection of single-valued functions, "glued" together along the branch cut instead of a multivalued function. For example, to make the function

single-valued, one makes a branch cut along the interval [0, 1] on the real axis, connecting the two branch points of the function. The same idea can be applied to the function z; but in that case one has to perceive that the point at infinity is the appropriate 'other' branch point to connect to from 0, for example along the whole negative real axis.

The branch cut device may appear arbitrary (and it is); but it is very useful, for example in the theory of special functions. An invariant explanation of the branch phenomenon is developed in Riemann surface theory (of which it is historically the origin), and more generally in the ramification and monodromy theory of algebraic functions and differential equations.

Complex logarithm

A plot of the multi-valued imaginary part of the complex logarithm function, which shows the branches. As a complex number z goes around the origin, the imaginary part of the logarithm goes up or down. This makes the origin a branch point of the function. Riemann surface log.svg
A plot of the multi-valued imaginary part of the complex logarithm function, which shows the branches. As a complex number z goes around the origin, the imaginary part of the logarithm goes up or down. This makes the origin a branch point of the function.

The typical example of a branch cut is the complex logarithm. If a complex number is represented in polar form z = reiθ, then the logarithm of z is

However, there is an obvious ambiguity in defining the angle θ: adding to θ any integer multiple of 2π will yield another possible angle. A branch of the logarithm is a continuous function L(z) giving a logarithm of z for all z in a connected open set in the complex plane. In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a matter of convenience.

The logarithm has a jump discontinuity of 2πi when crossing the branch cut. The logarithm can be made continuous by gluing together countably many copies, called sheets, of the complex plane along the branch cut. On each sheet, the value of the log differs from its principal value by a multiple of 2πi. These surfaces are glued to each other along the branch cut in the unique way to make the logarithm continuous. Each time the variable goes around the origin, the logarithm moves to a different branch.

Continuum of poles

One reason that branch cuts are common features of complex analysis is that a branch cut can be thought of as a sum of infinitely many poles arranged along a line in the complex plane with infinitesimal residues. For example,

is a function with a simple pole at z = a. Integrating over the location of the pole:

defines a function u(z) with a cut from 1 to 1. The branch cut can be moved around, since the integration line can be shifted without altering the value of the integral so long as the line does not pass across the point z.

Riemann surfaces

The concept of a branch point is defined for a holomorphic function ƒ:X  Y from a compact connected Riemann surface X to a compact Riemann surface Y (usually the Riemann sphere). Unless it is constant, the function ƒ will be a covering map onto its image at all but a finite number of points. The points of X where ƒ fails to be a cover are the ramification points of ƒ, and the image of a ramification point under ƒ is called a branch point.

For any point P  X and Q = ƒ(P)  Y, there are holomorphic local coordinates z for X near P and w for Y near Q in terms of which the function ƒ(z) is given by

for some integer k. This integer is called the ramification index of P. Usually the ramification index is one. But if the ramification index is not equal to one, then P is by definition a ramification point, and Q is a branch point.

If Y is just the Riemann sphere, and Q is in the finite part of Y, then there is no need to select special coordinates. The ramification index can be calculated explicitly from Cauchy's integral formula. Let γ be a simple rectifiable loop in X around P. The ramification index of ƒ at P is

This integral is the number of times ƒ(γ) winds around the point Q. As above, P is a ramification point and Q is a branch point if eP > 1.

Algebraic geometry

In the context of algebraic geometry, the notion of branch points can be generalized to mappings between arbitrary algebraic curves. Let ƒ:X  Y be a morphism of algebraic curves. By pulling back rational functions on Y to rational functions on X, K(X) is a field extension of K(Y). The degree of ƒ is defined to be the degree of this field extension [K(X):K(Y)], and ƒ is said to be finite if the degree is finite.

Assume that ƒ is finite. For a point P  X, the ramification index eP is defined as follows. Let Q = ƒ(P) and let t be a local uniformizing parameter at P; that is, t is a regular function defined in a neighborhood of Q with t(Q) = 0 whose differential is nonzero. Pulling back t by ƒ defines a regular function on X. Then

where vP is the valuation in the local ring of regular functions at P. That is, eP is the order to which vanishes at P. If eP > 1, then ƒ is said to be ramified at P. In that case, Q is called a branch point.

Notes

  1. Das, Shantanu (2011), "Fractional Differintegrations Insight Concepts", Functional Fractional Calculus, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 213–269, doi:10.1007/978-3-642-20545-3_5, ISBN   978-3-642-20544-6 , retrieved 2022-04-27 (page 6)
  2. Ahlfors 1979
  3. Solomentsev 2001; Markushevich 1965
  4. "Logarithmic branch point - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2019-06-11.

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Holomorphic function</span> Complex-differentiable (mathematical) function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series. Holomorphic functions are the central objects of study in complex analysis.

<span class="mw-page-title-main">Logarithm</span> Mathematical function, inverse of an exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base  of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx. When the base is clear from the context or is irrelevant it is sometimes written log x.

<span class="mw-page-title-main">Complex plane</span> Geometric representation of the complex numbers

In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers.

<span class="mw-page-title-main">Multivalued function</span> Generalized mathematical function

In mathematics, a multivalued function is a function that has two or more values in its range for at least one point in its domain. It is a set-valued function with additional properties depending on context. The terms multifunction and many-valued function are sometimes also used.

<span class="mw-page-title-main">Monodromy</span> Mathematical behavior near singularities

In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of monodromy comes from "running round singly". It is closely associated with covering maps and their degeneration into ramification; the aspect giving rise to monodromy phenomena is that certain functions we may wish to define fail to be single-valued as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a monodromy group: a group of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called polydromy.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically using a finite amount of terms.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

<span class="mw-page-title-main">Ramification (mathematics)</span> Branching out of a mathematical structure

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

In number theory, the local zeta functionZ(Vs) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

<span class="mw-page-title-main">Complex logarithm</span> Logarithm of a complex number

In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:

Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.

In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures.

In mathematics, the term Riemann–Hilbert correspondence refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in Hilbert's twenty-first problem was for the Riemann sphere, where it was about the existence of systems of linear regular differential equations with prescribed monodromy representations. First the Riemann sphere may be replaced by an arbitrary Riemann surface and then, in higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. There is a correspondence between certain systems of partial differential equations and possible monodromies of their solutions.

<span class="mw-page-title-main">Monodromy theorem</span> Mathematical Sentence

In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued.

In mathematics, the super-logarithm is one of the two inverse functions of tetration. Just as exponentiation has two inverse functions, roots and logarithms, tetration has two inverse functions, super-roots and super-logarithms. There are several ways of interpreting super-logarithms:

References