Branched covering

Last updated

In mathematics, a branched covering is a map that is almost a covering map, except on a small set.

Contents

In topology

In topology, a map is a branched covering if it is a covering map everywhere except for a nowhere dense set known as the branch set. Examples include the map from a wedge of circles to a single circle, where the map is a homeomorphism on each circle.

In algebraic geometry

In algebraic geometry, the term branched covering is used to describe morphisms from an algebraic variety to another one , the two dimensions being the same, and the typical fibre of being of dimension 0.

In that case, there will be an open set of (for the Zariski topology) that is dense in , such that the restriction of to (from to , that is) is unramified .[ clarification needed ] Depending on the context, we can take this as local homeomorphism for the strong topology, over the complex numbers, or as an étale morphism in general (under some slightly stronger hypotheses, on flatness and separability). Generically, then, such a morphism resembles a covering space in the topological sense. For example, if and are both Riemann surfaces, we require only that is holomorphic and not constant, and then there is a finite set of points of , outside of which we do find an honest covering

.

Ramification locus

The set of exceptional points on is called the ramification locus (i.e. this is the complement of the largest possible open set ). In general monodromy occurs according to the fundamental group of acting on the sheets of the covering (this topological picture can be made precise also in the case of a general base field).

Kummer extensions

Branched coverings are easily constructed as Kummer extensions, i.e. as algebraic extension of the function field. The hyperelliptic curves are prototypic examples.

Unramified covering

An unramified covering then is the occurrence of an empty ramification locus.

Examples

Elliptic curve

Morphisms of curves provide many examples of ramified coverings. For example, let C be the elliptic curve of equation

The projection of C onto the x-axis is a ramified cover with ramification locus given by

This is because for these three values of x the fiber is the double point while for any other value of x, the fiber consists of two distinct points (over an algebraically closed field).

This projection induces an algebraic extension of degree two of the function fields: Also, if we take the fraction fields of the underlying commutative rings, we get the morphism

Hence this projection is a degree 2 branched covering. This can be homogenized to construct a degree 2 branched covering of the corresponding projective elliptic curve to the projective line.

Plane algebraic curve

The previous example may be generalized to any algebraic plane curve in the following way. Let C be a plane curve defined by the equation f(x,y) = 0, where f is a separable and irreducible polynomial in two indeterminates. If n is the degree of f in y, then the fiber consists of n distinct points, except for a finite number of values of x. Thus, this projection is a branched covering of degree n.

The exceptional values of x are the roots of the coefficient of in f, and the roots of the discriminant of f with respect to y.

Over a root r of the discriminant, there is at least a ramified point, which is either a critical point or a singular point. If r is also a root of the coefficient of in f, then this ramified point is "at infinity".

Over a root s of the coefficient of in f, the curve C has an infinite branch, and the fiber at s has less than n points. However, if one extends the projection to the projective completions of C and the x-axis, and if s is not a root of the discriminant, the projection becomes a covering over a neighbourhood of s.

The fact that this projection is a branched covering of degree n may also be seen by considering the function fields. In fact, this projection corresponds to the field extension of degree n

Varying Ramifications

We can also generalize branched coverings of the line with varying ramification degrees. Consider a polynomial of the form

as we choose different points , the fibers given by the vanishing locus of vary. At any point where the multiplicity of one of the linear terms in the factorization of increases by one, there is a ramification.

Scheme Theoretic Examples

Elliptic Curves

Morphisms of curves provide many examples of ramified coverings of schemes. For example, the morphism from an affine elliptic curve to a line

is a ramified cover with ramification locus given by

This is because at any point of in the fiber is the scheme

Also, if we take the fraction fields of the underlying commutative rings, we get the field homomorphism

which is an algebraic extension of degree two; hence we got a degree 2 branched covering of an elliptic curve to the affine line. This can be homogenized to construct a morphism of a projective elliptic curve to .

Hyperelliptic curve

A hyperelliptic curve provides a generalization of the above degree cover of the affine line, by considering the affine scheme defined over by a polynomial of the form

where for

Higher Degree Coverings of the Affine Line

We can generalize the previous example by taking the morphism

where has no repeated roots. Then the ramification locus is given by

where the fibers are given by

Then, we get an induced morphism of fraction fields

There is an -module isomorphism of the target with

Hence the cover is of degree .

Superelliptic Curves

Superelliptic curves are a generalization of hyperelliptic curves and a specialization of the previous family of examples since they are given by affine schemes from polynomials of the form

where and has no repeated roots.

Ramified Coverings of Projective Space

Another useful class of examples come from ramified coverings of projective space. Given a homogeneous polynomial we can construct a ramified covering of with ramification locus

by considering the morphism of projective schemes

Again, this will be a covering of degree .

Applications

Branched coverings come with a symmetry group of transformations . Since the symmetry group has stabilizers at the points of the ramification locus, branched coverings can be used to construct examples of orbifolds, or Deligne–Mumford stacks.

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

<span class="mw-page-title-main">Ramification (mathematics)</span> Branching out of a mathematical structure

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.

In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In algebraic geometry, a morphism between schemes is said to be smooth if

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

This is a glossary of algebraic geometry.

In mathematics, a superelliptic curve is an algebraic curve defined by an equation of the form

In mathematics, an Artin–Schreier curve is a plane curve defined over an algebraically closed field of characteristic by an equation

References