Dimension of an algebraic variety

Last updated

In mathematics and specifically in algebraic geometry, the dimension of an algebraic variety may be defined in various equivalent ways.

Contents

Some of these definitions are of geometric nature, while some other are purely algebraic and rely on commutative algebra. Some are restricted to algebraic varieties while others apply also to any algebraic set. Some are intrinsic, as independent of any embedding of the variety into an affine or projective space, while other are related to such an embedding.

Dimension of an affine algebraic set

Let K be a field, and LK be an algebraically closed extension.

An affine algebraic set V is the set of the common zeros in Ln of the elements of an ideal I in a polynomial ring Let be the K-algebra of the polynomial functions over V. The dimension of V is any of the following integers. It does not change if K is enlarged, if L is replaced by another algebraically closed extension of K and if I is replaced by another ideal having the same zeros (that is having the same radical). The dimension is also independent of the choice of coordinates; in other words it does not change if the xi are replaced by linearly independent linear combinations of them.

The dimension of V is

This definition generalizes a property of the dimension of a Euclidean space or a vector space. It is thus probably the definition that gives the easiest intuitive description of the notion.

This is the transcription of the preceding definition in the language of commutative algebra, the Krull dimension being the maximal length of the chains of prime ideals of A.

This definition shows that the dimension is a local property if is irreducible. If is irreducible, it turns out that all the local rings at points of V have the same Krull dimension (see [1] ); thus:

This rephrases the previous definition into a more geometric language.

This relates the dimension of a variety to that of a differentiable manifold. More precisely, if V if defined over the reals, then the set of its real regular points, if it is not empty, is a differentiable manifold that has the same dimension as a variety and as a manifold.

This is the algebraic analogue to the fact that a connected manifold has a constant dimension. This can also be deduced from the result stated below the third definition, and the fact that the dimension of the tangent space is equal to the Krull dimension at any non-singular point (see Zariski tangent space).

This definition is not intrinsic as it apply only to algebraic sets that are explicitly embedded in an affine or projective space.

This the algebraic translation of the preceding definition.

This is the algebraic translation of the fact that the intersection of nd general hypersurfaces is an algebraic set of dimension d.

This allows, through a Gröbner basis computation to compute the dimension of the algebraic set defined by a given system of polynomial equations. Moreover, the dimension is not changed if the polynomials of the Gröbner basis are replaced with their leading monomials, and if these leading monomials are replaced with their radical (monomials obtained by removing exponents). So: [2]

This allows to prove easily that the dimension is invariant under birational equivalence.

Dimension of a projective algebraic set

Let V be a projective algebraic set defined as the set of the common zeros of a homogeneous ideal I in a polynomial ring over a field K, and let A=R/I be the graded algebra of the polynomials over V.

All the definitions of the previous section apply, with the change that, when A or I appear explicitly in the definition, the value of the dimension must be reduced by one. For example, the dimension of V is one less than the Krull dimension of A.

Computation of the dimension

Given a system of polynomial equations over an algebraically closed field , it may be difficult to compute the dimension of the algebraic set that it defines.

Without further information on the system, there is only one practical method, which consists of computing a Gröbner basis and deducing the degree of the denominator of the Hilbert series of the ideal generated by the equations.

The second step, which is usually the fastest, may be accelerated in the following way: Firstly, the Gröbner basis is replaced by the list of its leading monomials (this is already done for the computation of the Hilbert series). Then each monomial like is replaced by the product of the variables in it: Then the dimension is the maximal size of a subset S of the variables, such that none of these products of variables depends only on the variables in S.

This algorithm is implemented in several computer algebra systems. For example in Maple, this is the function Groebner[HilbertDimension], and in Macaulay2, this is the function dim.

Real dimension

The real dimension of a set of real points, typically a semialgebraic set, is the dimension of its Zariski closure. For a semialgebraic set S, the real dimension is one of the following equal integers: [3]

For an algebraic set defined over the reals (that is defined by polynomials with real coefficients), it may occur that the real dimension of the set of its real points is smaller than its dimension as a semi algebraic set. For example, the algebraic surface of equation is an algebraic variety of dimension two, which has only one real point (0, 0, 0), and thus has the real dimension zero.

The real dimension is more difficult to compute than the algebraic dimension. For the case of a real hypersurface (that is the set of real solutions of a single polynomial equation), there exists a probabilistic algorithm to compute its real dimension. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

In mathematics Hilbert's basis theorem asserts that every ideal of a polynomial ring over a field has a finite generating set.

<span class="mw-page-title-main">Prime ideal</span> Ideal in a ring which has properties similar to prime elements

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

In algebra, ring theory is the study of rings, algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings ; related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be any Noetherian local ring with unique maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then Krull's principal ideal theorem implies that n ≥ dim A, and A is regular whenever n = dim A.

In the theory of multivariate polynomials, Buchberger's algorithm is a method for transforming a given set of polynomials into a Gröbner basis, which is another set of polynomials that have the same common zeros and are more convenient for extracting information on these common zeros. It was introduced by Bruno Buchberger simultaneously with the definition of Gröbner bases.

In mathematics, Hilbert's syzygy theorem is one of the three fundamental theorems about polynomial rings over fields, first proved by David Hilbert in 1890, that were introduced for solving important open questions in invariant theory, and are at the basis of modern algebraic geometry. The two other theorems are Hilbert's basis theorem, which asserts that all ideals of polynomial rings over a field are finitely generated, and Hilbert's Nullstellensatz, which establishes a bijective correspondence between affine algebraic varieties and prime ideals of polynomial rings.

In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exist elements y1, y2, ..., yd in A that are algebraically independent over k and such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd]. The integer d is equal to the Krull dimension of the ring A; and if A is an integral domain, d is also the transcendence degree of the field of fractions of A over k.

In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.

This is a glossary of commutative algebra.

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

In abstract algebra, a monomial ideal is an ideal generated by monomials in a multivariate polynomial ring over a field.

References

  1. Chapter 11 of Atiyah, Michael Francis; Macdonald, I.G. (1969), Introduction to Commutative Algebra, Westview Press, ISBN   978-0-201-40751-8.
  2. Cox, David A.; Little, John; O'Shea, Donal Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Fourth edition. Undergraduate Texts in Mathematics. Springer, Cham, 2015.
  3. Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (2003), Algorithms in Real Algebraic Geometry (PDF), Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag
  4. Ivan, Bannwarth; Mohab, Safey El Din (2015), Probabilistic Algorithm for Computing the Dimension of Real Algebraic Sets, Proceedings of the 2015 international symposium on Symbolic and algebraic computation, ACM