Dimension of a scheme

Last updated

In algebraic geometry, the dimension of a scheme is a generalization of a dimension of an algebraic variety. Scheme theory emphasizes the relative point of view and, accordingly, the relative dimension of a morphism of schemes is also important.

Contents

Definition

By definition, the dimension of a scheme X is the dimension of the underlying topological space: the supremum of the lengths of chains of irreducible closed subsets:

[1]

In particular, if is an affine scheme, then such chains correspond to chains of prime ideals (inclusion reversed) and so the dimension of X is precisely the Krull dimension of A.

If Y is an irreducible closed subset of a scheme X, then the codimension of Y in X is the supremum of the lengths of chains of irreducible closed subsets:

[2]

An irreducible subset of X is an irreducible component of X if and only if the codimension of it in X is zero. If is affine, then the codimension of Y in X is precisely the height of the prime ideal defining Y in X.

Examples

while X is irreducible.

Equidimensional scheme

An equidimensional scheme (or, pure dimensional scheme) is a scheme all of whose irreducible components are of the same dimension (implicitly assuming the dimensions are all well-defined).

Examples

All irreducible schemes are equidimensional. [5]

In affine space, the union of a line and a point not on the line is not equidimensional. In general, if two closed subschemes of some scheme, neither containing the other, have unequal dimensions, then their union is not equidimensional.

If a scheme is smooth (for instance, étale) over Spec k for some field k, then every connected component (which is then in fact an irreducible component), is equidimensional.

Relative dimension

Let be a morphism locally of finite type between two schemes and . The relative dimension of at a point is the dimension of the fiber . If all the nonempty fibers [ clarification needed ] are purely of the same dimension , then one says that is of relative dimension . [6]

See also

Notes

  1. The Spec of the symmetric algebra of the dual vector space of V is the scheme structure on .
  2. In fact, by definition, is the fiber product of and and so it is the Spec of .
  1. Hartshorne 1977 , Ch. I, just after Corollary 1.6.
  2. Hartshorne 1977 , Ch. II, just after Example 3.2.6.
  3. Hartshorne 1977 , Ch. II, Exercise 3.20. (b)
  4. Hartshorne 1977 , Ch. II, Exercise 3.20. (e)
  5. Dundas, Bjorn Ian; Jahren, Björn; Levine, Marc; Østvær, P.A.; Röndigs, Oliver; Voevodsky, Vladimir (2007), Motivic Homotopy Theory: Lectures at a Summer School in Nordfjordeid, Norway, August 2002, Springer, p. 101, ISBN   9783540458975 .
  6. Adeel, Ahmed Kahn (March 2013). "Relative Dimension in Ncatlab". Ncatlab . Retrieved 8 June 2022.

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In algebraic geometry, the Zariski tangent space is a construction that defines a tangent space at a point P on an algebraic variety V. It does not use differential calculus, being based directly on abstract algebra, and in the most concrete cases just the theory of a system of linear equations.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exists a non-negative integer d and algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd].

In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety. The need of a theory for such an apparently simple notion results from the existence of many definitions of the dimension that are equivalent only in the most regular cases. A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

This is a glossary of algebraic geometry.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F.

In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions . It is denoted by .

References