Scheme (mathematics)

Last updated

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

Contents

Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise Éléments de géométrie algébrique (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). [1] Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem.

Schemes elaborate the fundamental idea that an algebraic variety is best analyzed through the coordinate ring of regular algebraic functions defined on it (or on its subsets), and each subvariety corresponds to the ideal of functions which vanish on the subvariety. Intuitively, a scheme is a topological space consisting of closed points which correspond to geometric points, together with non-closed points which are generic points of irreducible subvarieties. The space is covered by an atlas of open sets, each endowed with a coordinate ring of regular functions, with specified coordinate changes between the functions over intersecting open sets. Such a structure is called a ringed space or a sheaf of rings. The cases of main interest are the Noetherian schemes, in which the coordinate rings are Noetherian rings.

Formally, a scheme is a ringed space covered by affine schemes. An affine scheme is the spectrum of a commutative ring; its points are the prime ideals of the ring, and its closed points are maximal ideals. The coordinate ring of an affine scheme is the ring itself, and the coordinate rings of open subsets are rings of fractions.

The relative point of view is that much of algebraic geometry should be developed for a morphism XY of schemes (called a scheme Xover the baseY), rather than for an individual scheme. For example, in studying algebraic surfaces, it can be useful to consider families of algebraic surfaces over any scheme Y. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a moduli space.

For some of the detailed definitions in the theory of schemes, see the glossary of scheme theory.

Development

The origins of algebraic geometry mostly lie in the study of polynomial equations over the real numbers. By the 19th century, it became clear (notably in the work of Jean-Victor Poncelet and Bernhard Riemann) that algebraic geometry over the real numbers is simplified by working over the field of complex numbers, which has the advantage of being algebraically closed. [2] The early 20th century saw analogies between algebraic geometry and number theory, suggesting the question: can algebraic geometry be developed over other fields, such as those with positive characteristic, and more generally over number rings like the integers, where the tools of topology and complex analysis used to study complex varieties do not seem to apply.

Hilbert's Nullstellensatz suggests an approach to algebraic geometry over any algebraically closed field k: the maximal ideals in the polynomial ring k[x1,...,xn] are in one-to-one correspondence with the set kn of n-tuples of elements of k, and the prime ideals correspond to the irreducible algebraic sets in kn, known as affine varieties. Motivated by these ideas, Emmy Noether and Wolfgang Krull developed commutative algebra in the 1920s and 1930s. [3] Their work generalizes algebraic geometry in a purely algebraic direction, generalizing the study of points (maximal ideals in a polynomial ring) to the study of prime ideals in any commutative ring. For example, Krull defined the dimension of a commutative ring in terms of prime ideals and, at least when the ring is Noetherian, he proved that this definition satisfies many of the intuitive properties of geometric dimension.

Noether and Krull's commutative algebra can be viewed as an algebraic approach to affine algebraic varieties. However, many arguments in algebraic geometry work better for projective varieties, essentially because they are compact. From the 1920s to the 1940s, B. L. van der Waerden, André Weil and Oscar Zariski applied commutative algebra as a new foundation for algebraic geometry in the richer setting of projective (or quasi-projective) varieties. [4] In particular, the Zariski topology is a useful topology on a variety over any algebraically closed field, replacing to some extent the classical topology on a complex variety (based on the metric topology of the complex numbers).

For applications to number theory, van der Waerden and Weil formulated algebraic geometry over any field, not necessarily algebraically closed. Weil was the first to define an abstract variety (not embedded in projective space), by gluing affine varieties along open subsets, on the model of abstract manifolds in topology. He needed this generality for his construction of the Jacobian variety of a curve over any field. (Later, Jacobians were shown to be projective varieties by Weil, Chow and Matsusaka.)

The algebraic geometers of the Italian school had often used the somewhat foggy concept of the generic point of an algebraic variety. What is true for the generic point is true for "most" points of the variety. In Weil's Foundations of Algebraic Geometry (1946), generic points are constructed by taking points in a very large algebraically closed field, called a universal domain. [4] This worked awkwardly: there were many different generic points for the same variety. (In the later theory of schemes, each algebraic variety has a single generic point.)

In the 1950s, Claude Chevalley, Masayoshi Nagata and Jean-Pierre Serre, motivated in part by the Weil conjectures relating number theory and algebraic geometry, further extended the objects of algebraic geometry, for example by generalizing the base rings allowed. The word scheme was first used in the 1956 Chevalley Seminar, in which Chevalley pursued Zariski's ideas. [5] According to Pierre Cartier, it was André Martineau who suggested to Serre the possibility of using the spectrum of an arbitrary commutative ring as a foundation for algebraic geometry. [6]

Origin of schemes

The theory took its definitive form in Grothendieck's Éléments de géométrie algébrique (EGA) and the later Séminaire de géométrie algébrique (SGA), bringing to a conclusion a generation of experimental suggestions and partial developments. [7] Grothendieck defined the spectrum X of a commutative ring R as the space of prime ideals of R with a natural topology (known as the Zariski topology), but augmented it with a sheaf of rings: to every open subset U he assigned a commutative ring OX(U), which may be thought of as the coordinate ring of regular functions on U. These objects Spec(R) are the affine schemes; a general scheme is then obtained by "gluing together" affine schemes.

Much of algebraic geometry focuses on projective or quasi-projective varieties over a field k, most often over the complex numbers. Grothendieck developed a large body of theory for arbitrary schemes extending much of the geometric intuition for varieties. For example, it is common to construct a moduli space first as a scheme, and only later study whether it is a more concrete object such as a projective variety. Applying Grothendieck's theory to schemes over the integers and other number fields led to powerful new perspectives in number theory.

Definition

An affine scheme is a locally ringed space isomorphic to the spectrum Spec(R) of a commutative ring R. A scheme is a locally ringed space X admitting a covering by open sets Ui, such that each Ui (as a locally ringed space) is an affine scheme. [8] In particular, X comes with a sheaf OX, which assigns to every open subset U a commutative ring OX(U) called the ring of regular functions on U. One can think of a scheme as being covered by "coordinate charts" that are affine schemes. The definition means exactly that schemes are obtained by gluing together affine schemes using the Zariski topology.

In the early days, this was called a prescheme, and a scheme was defined to be a separated prescheme. The term prescheme has fallen out of use, but can still be found in older books, such as Grothendieck's "Éléments de géométrie algébrique" and Mumford's "Red Book". [9] The sheaf properties of OX(U) mean that its elements, which are not necessarily functions, can neverthess be patched together from their restrictions in the same way as functions.

A basic example of an affine scheme is affine n-space over a field k, for a natural number n. By definition, An
k
is the spectrum of the polynomial ring k[x1,...,xn]. In the spirit of scheme theory, affine n-space can in fact be defined over any commutative ring R, meaning Spec(R[x1,...,xn]).

The category of schemes

Schemes form a category, with morphisms defined as morphisms of locally ringed spaces. (See also: morphism of schemes.) For a scheme Y, a scheme XoverY (or a Y-scheme) means a morphism XY of schemes. A scheme Xover a commutative ring R means a morphism X → Spec(R).

An algebraic variety over a field k can be defined as a scheme over k with certain properties. There are different conventions about exactly which schemes should be called varieties. One standard choice is that a variety over k means an integral separated scheme of finite type over k. [10]

A morphism f: XY of schemes determines a pullback homomorphism on the rings of regular functions, f*: O(Y) → O(X). In the case of affine schemes, this construction gives a one-to-one correspondence between morphisms Spec(A) → Spec(B) of schemes and ring homomorphisms BA. [11] In this sense, scheme theory completely subsumes the theory of commutative rings.

Since Z is an initial object in the category of commutative rings, the category of schemes has Spec(Z) as a terminal object.

For a scheme X over a commutative ring R, an R-point of X means a section of the morphism X → Spec(R). One writes X(R) for the set of R-points of X. In examples, this definition reconstructs the old notion of the set of solutions of the defining equations of X with values in R. When R is a field k, X(k) is also called the set of k-rational points of X.

More generally, for a scheme X over a commutative ring R and any commutative R-algebra S, an S-point of X means a morphism Spec(S) → X over R. One writes X(S) for the set of S-points of X. (This generalizes the old observation that given some equations over a field k, one can consider the set of solutions of the equations in any field extension E of k.) For a scheme X over R, the assignment SX(S) is a functor from commutative R-algebras to sets. It is an important observation that a scheme X over R is determined by this functor of points. [12]

The fiber product of schemes always exists. That is, for any schemes X and Z with morphisms to a scheme Y, the categorical fiber product exists in the category of schemes. If X and Z are schemes over a field k, their fiber product over Spec(k) may be called the productX × Z in the category of k-schemes. For example, the product of affine spaces and over k is affine space over k.

Since the category of schemes has fiber products and also a terminal object Spec(Z), it has all finite limits.

Examples

Here and below, all the rings considered are commutative.

Affine space

Let be an algebraically closed field. The affine space is the algebraic variety of all points with coordinates in ; its coordinate ring is the polynomial ring . The corresponding scheme is a topological space with the Zariski topology, whose closed points are the maximal ideals , the set of polynomials vanishing at . The scheme also contains a non-closed point for each non-maximal prime ideal , whose vanishing defines an irreducible subvariety ; the topological closure of the scheme point is the subscheme , including all the closed points of the subvariety, i.e. with , or equivalently .

The scheme has a basis of open subsets given by the complements of hypersurfaces,

for irreducible polynomials . This set is endowed with its coordinate ring of regular functions

.

This induces a unique sheaf which gives the usual ring of rational functions regular on a given open set .

Each ring element , a polynomial function on , also defines a function on the points of the scheme whose value at lies in the quotient ring , the residue ring. We define as the image of under the natural map . A maximal ideal gives the residue field, with the natural isomorphism , so that corresponds to the original value .

The vanishing locus of a polynomial is a hypersurface subvariety , corresponding to the principal ideal . The corresponding scheme is , a closed subscheme of affine space. For example, taking to be the complex or real numbers, the equation defines a nodal cubic curve in the affine plane , corresponding to the scheme .

Spec of the integers

The ring of integers can be considered as the coordinate ring of the scheme . The Zariski topology has closed points , the principal ideals of the prime numbers ; as well as the generic point , the zero ideal, whose closure is the whole scheme. Closed sets are finite sets, and open sets are their complements, the cofinite sets; any infinite set of points is dense.

SpecZ.png

The basis open set corresponding to the irreducible element is , with coordinate ring . For the open set , this induces .

A number corresponds to a function on the scheme , a function whose value at lies in the residue field , the finite field of integers modulo : the function is defined by , and also in the generic residue ring . The function is determined by its values at the points only, so we can think of as a kind of "regular function" on the closed points, a very special type among the arbitrary functions with .

Note that the point is the vanishing locus of the function , the point where the value of is equal to zero in the residue field. The field of "rational functions" on is the fraction field of the generic residue ring, . A fraction has "poles" at the points corresponding to prime divisors of the denominator.

This also gives a geometric interpretaton of Bezout's lemma stating that if the integers have no common prime factor, then there are integers with . Geometrically, this is a version of the weak Hilbert Nullstellensatz for the scheme : if the functions have no common vanishing points in , then they generate the unit ideal in the coordinate ring . Indeed, we may consider the terms as forming a kind of partition of unity subordinate to the covering of by the open sets .

Affine line over the integers

The affine space is a variety with coordinate ring , the polynomials with integer coefficients. The corresponding scheme is , whose points are all of the prime ideals . The closed points are maximal ideals of the form , where is a prime number, and is a non-constant polynomial with no integer factor and which is irreducible modulo . Thus, we may picture as two-dimensional, with a "characteristic direction" measured by the coordinate , and a "spatial direction" with coordinate .

SpecZx.png

A given prime number defines a "vertical line", the subscheme of the prime ideal : this contains for all , the "characteristic points" of the scheme. Fixing the -coordinate, we have the "horizontal line" , the subscheme of the prime ideal . We also have the line corresponding to the rational coordinate , which does not intersect for those which divide .

A higher degree "horizontal" subscheme like corresponds to -values which are roots of , namely . This behaves differently under different -coordinates. At , we get two points , since . At , we get one ramified double-point , since . And at , we get that is a prime ideal corresponding to in an extension field of ; since we cannot distinguish between these values (they are symmetric under the Galois group), we should picture as two fused points. Overall, is a kind of fusion of two Galois-symmetric horizonal lines, a curve of degree 2.

The residue field at is , a field extension of adjoining a root of ; this is a finite field with elements, . A polynomial corresponds to a function on the scheme with values , that is . Again each is determined by its values at closed points; is the vanishing locus of the constant polynomial ; and contains the points in each characteristic corresponding to Galois orbits of roots of in the algebraic closure .

The scheme is not proper, so that pairs of curves may fail to intersect with the expected multiplicity. This is a major obstacle to analyzing Diophantine equations with geometric tools. Arakelov theory overcomes this obstacle by compactifying affine arithmetic schemes, adding points at infinity corresponding to valuations.

Arithmetic surfaces

If we consider a polynomial then the affine scheme has a canonical morphism to and is called an arithmetic surface. The fibers are then algebraic curves over the finite fields . If is an elliptic curve, then the fibers over its discriminant locus, where are all singular schemes. [13] For example, if is a prime number and then its discriminant is . This curve is singular over the prime numbers .

Non-affine schemes

Examples of morphisms

It is also fruitful to consider examples of morphisms as examples of schemes since they demonstrate their technical effectiveness for encapsulating many objects of study in algebraic and arithmetic geometry.

Motivation for schemes

Here are some of the ways in which schemes go beyond older notions of algebraic varieties, and their significance.

Coherent sheaves

A central part of scheme theory is the notion of coherent sheaves, generalizing the notion of (algebraic) vector bundles. For a scheme X, one starts by considering the abelian category of OX-modules , which are sheaves of abelian groups on X that form a module over the sheaf of regular functions OX. In particular, a module M over a commutative ring R determines an associated OX-module ~M on X = Spec(R). A quasi-coherent sheaf on a scheme X means an OX-module that is the sheaf associated to a module on each affine open subset of X. Finally, a coherent sheaf (on a Noetherian scheme X, say) is an OX-module that is the sheaf associated to a finitely generated module on each affine open subset of X.

Coherent sheaves include the important class of vector bundles, which are the sheaves that locally come from finitely generated free modules. An example is the tangent bundle of a smooth variety over a field. However, coherent sheaves are richer; for example, a vector bundle on a closed subscheme Y of X can be viewed as a coherent sheaf on X that is zero outside Y (by the direct image construction). In this way, coherent sheaves on a scheme X include information about all closed subschemes of X. Moreover, sheaf cohomology has good properties for coherent (and quasi-coherent) sheaves. The resulting theory of coherent sheaf cohomology is perhaps the main technical tool in algebraic geometry. [18] [19]

Generalizations

Considered as its functor of points, a scheme is a functor that is a sheaf of sets for the Zariski topology on the category of commutative rings, and that, locally in the Zariski topology, is an affine scheme. This can be generalized in several ways. One is to use the étale topology. Michael Artin defined an algebraic space as a functor that is a sheaf in the étale topology and that, locally in the étale topology, is an affine scheme. Equivalently, an algebraic space is the quotient of a scheme by an étale equivalence relation. A powerful result, the Artin representability theorem, gives simple conditions for a functor to be represented by an algebraic space. [20]

A further generalization is the idea of a stack. Crudely speaking, algebraic stacks generalize algebraic spaces by having an algebraic group attached to each point, which is viewed as the automorphism group of that point. For example, any action of an algebraic group G on an algebraic variety X determines a quotient stack [X/G], which remembers the stabilizer subgroups for the action of G. More generally, moduli spaces in algebraic geometry are often best viewed as stacks, thereby keeping track of the automorphism groups of the objects being classified.

Grothendieck originally introduced stacks as a tool for the theory of descent. In that formulation, stacks are (informally speaking) sheaves of categories. [21] From this general notion, Artin defined the narrower class of algebraic stacks (or "Artin stacks"), which can be considered geometric objects. These include Deligne–Mumford stacks (similar to orbifolds in topology), for which the stabilizer groups are finite, and algebraic spaces, for which the stabilizer groups are trivial. The Keel–Mori theorem says that an algebraic stack with finite stabilizer groups has a coarse moduli space that is an algebraic space.

Another type of generalization is to enrich the structure sheaf, bringing algebraic geometry closer to homotopy theory. In this setting, known as derived algebraic geometry or "spectral algebraic geometry", the structure sheaf is replaced by a homotopical analog of a sheaf of commutative rings (for example, a sheaf of E-infinity ring spectra). These sheaves admit algebraic operations that are associative and commutative only up to an equivalence relation. Taking the quotient by this equivalence relation yields the structure sheaf of an ordinary scheme. Not taking the quotient, however, leads to a theory that can remember higher information, in the same way that derived functors in homological algebra yield higher information about operations such as tensor product and the Hom functor on modules.

See also

Citations

  1. Introduction of the first edition of "Éléments de géométrie algébrique".
  2. Dieudonné 1985, Chapters IV and V.
  3. Dieudonné 1985, sections VII.2 and VII.5.
  4. 1 2 Dieudonné 1985, section VII.4.
  5. Chevalley, C. (1955–1956), Les schémas, Séminaire Henri Cartan, vol. 8
  6. Cartier 2001, note 29.
  7. Dieudonné 1985, sections VII.4, VIII.2, VIII.3.
  8. Hartshorne 1997, section II.2.
  9. Mumford 1999, Chapter II.
  10. Stacks Project, Tag 020D .
  11. Hartshorne 1997, Proposition II.2.3.
  12. Eisenbud & Harris 1998, Proposition VI-2.
  13. "Elliptic curves" (PDF). p. 20.
  14. Hartshorne 1997, Example II.4.0.1.
  15. Hartshorne 1997, Exercises I.3.6 and III.4.3.
  16. Arapura 2011, section 1.
  17. Eisenbud & Harris 1998, Example II-10.
  18. Dieudonné 1985, sections VIII.2 and VIII.3.
  19. Hartshorne 1997, Chapter III.
  20. Stacks Project, Tag 07Y1 .
  21. Vistoli 2005, Definition 4.6.

Related Research Articles

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In commutative algebra, the support of a module M over a commutative ring R is the set of all prime ideals of R such that . It is denoted by . The support is, by definition, a subset of the spectrum of R.

In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

This is a glossary of algebraic geometry.

In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra.

In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The functor F is then said to be naturally equivalent to the functor of points of X; and the scheme X is said to represent the functor F, and to classify geometric objects over S given by F.

In commutative algebra, given a homomorphism AB of commutative rings, B is called an A-algebra of finite type if B is a finitely generated as an A-algebra. It is much stronger for B to be a finiteA-algebra, which means that B is finitely generated as an A-module. For example, for any commutative ring A and natural number n, the polynomial ring A[x1, ..., xn] is an A-algebra of finite type, but it is not a finite A-module unless A = 0 or n = 0. Another example of a finite-type homomorphism that is not finite is .

References