Scheme (mathematics)

Last updated

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

Contents

Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise Éléments de géométrie algébrique ; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). [1] Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem.

Formally, a scheme is a topological space, together with commutative rings for all of its open sets, that arises from gluing together spectra (spaces of prime ideals) of commutative rings along their open subsets. In other words, it is a ringed space that is locally a spectrum of a commutative ring.

The relative point of view is that much of algebraic geometry should be developed for a morphism XY of schemes (called a scheme XoverY), rather than for an individual scheme. For example, in studying algebraic surfaces, it can be useful to consider families of algebraic surfaces over any scheme Y. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a moduli space.

For some of the detailed definitions in the theory of schemes, see the glossary of scheme theory.

Development

The origins of algebraic geometry mostly lie in the study of polynomial equations over the real numbers. By the 19th century, it became clear (notably in the work of Jean-Victor Poncelet and Bernhard Riemann) that algebraic geometry was simplified by working over the field of complex numbers, which has the advantage of being algebraically closed. [2] Two issues gradually drew attention in the early 20th century, motivated by problems in number theory: how can algebraic geometry be developed over any algebraically closed field, especially in positive characteristic? (The tools of topology and complex analysis used to study complex varieties do not seem to apply here.) And what about algebraic geometry over an arbitrary field?

Hilbert's Nullstellensatz suggests an approach to algebraic geometry over any algebraically closed field k: the maximal ideals in the polynomial ring k[x1,...,xn] are in one-to-one correspondence with the set kn of n-tuples of elements of k, and the prime ideals correspond to the irreducible algebraic sets in kn, known as affine varieties. Motivated by these ideas, Emmy Noether and Wolfgang Krull developed the subject of commutative algebra in the 1920s and 1930s. [3] Their work generalizes algebraic geometry in a purely algebraic direction: instead of studying the prime ideals in a polynomial ring, one can study the prime ideals in any commutative ring. For example, Krull defined the dimension of any commutative ring in terms of prime ideals. At least when the ring is Noetherian, he proved many of the properties one would want from the geometric notion of dimension.

Noether and Krull's commutative algebra can be viewed as an algebraic approach to affine algebraic varieties. However, many arguments in algebraic geometry work better for projective varieties, essentially because projective varieties are compact. From the 1920s to the 1940s, B. L. van der Waerden, André Weil and Oscar Zariski applied commutative algebra as a new foundation for algebraic geometry in the richer setting of projective (or quasi-projective) varieties. [4] In particular, the Zariski topology is a useful topology on a variety over any algebraically closed field, replacing to some extent the classical topology on a complex variety (based on the topology of the complex numbers).

For applications to number theory, van der Waerden and Weil formulated algebraic geometry over any field, not necessarily algebraically closed. Weil was the first to define an abstract variety (not embedded in projective space), by gluing affine varieties along open subsets, on the model of manifolds in topology. He needed this generality for his construction of the Jacobian variety of a curve over any field. (Later, Jacobians were shown to be projective varieties by Weil, Chow and Matsusaka.)

The algebraic geometers of the Italian school had often used the somewhat foggy concept of the generic point of an algebraic variety. What is true for the generic point is true for "most" points of the variety. In Weil's Foundations of Algebraic Geometry (1946), generic points are constructed by taking points in a very large algebraically closed field, called a universal domain. [4] Although this worked as a foundation, it was awkward: there were many different generic points for the same variety. (In the later theory of schemes, each algebraic variety has a single generic point.)

In the 1950s, Claude Chevalley, Masayoshi Nagata and Jean-Pierre Serre, motivated in part by the Weil conjectures relating number theory and algebraic geometry, further extended the objects of algebraic geometry, for example by generalizing the base rings allowed. The word scheme was first used in the 1956 Chevalley Seminar, in which Chevalley was pursuing Zariski's ideas. [5] According to Pierre Cartier, it was André Martineau who suggested to Serre the possibility of using the spectrum of an arbitrary commutative ring as a foundation for algebraic geometry. [6]

Origin of schemes

Grothendieck then gave the decisive definition of a scheme, bringing to a conclusion a generation of experimental suggestions and partial developments. [7] He defined the spectrum X of a commutative ring R as the space of prime ideals of R with a natural topology (known as the Zariski topology), but augmented it with a sheaf of rings: to every open subset U he assigned a commutative ring OX(U). These objects Spec(R) are the affine schemes; a general scheme is then obtained by "gluing together" affine schemes.

Much of algebraic geometry focuses on projective or quasi-projective varieties over a field k; in fact, k is often taken to be the complex numbers. Schemes of that sort are very special compared to arbitrary schemes; compare the examples below. Nonetheless, it is convenient that Grothendieck developed a large body of theory for arbitrary schemes. For example, it is common to construct a moduli space first as a scheme, and only later study whether it is a more concrete object such as a projective variety. Also, applications to number theory rapidly lead to schemes over the integers that are not defined over any field.

Definition

An affine scheme is a locally ringed space isomorphic to the spectrum Spec(R) of a commutative ring R. A scheme is a locally ringed space X admitting a covering by open sets Ui, such that each Ui (as a locally ringed space) is an affine scheme. [8] In particular, X comes with a sheaf OX, which assigns to every open subset U a commutative ring OX(U) called the ring of regular functions on U. One can think of a scheme as being covered by "coordinate charts" that are affine schemes. The definition means exactly that schemes are obtained by gluing together affine schemes using the Zariski topology.

In the early days, this was called a prescheme, and a scheme was defined to be a separated prescheme. The term prescheme has fallen out of use, but can still be found in older books, such as Grothendieck's "Éléments de géométrie algébrique" and Mumford's "Red Book". [9]

A basic example of an affine scheme is affine n-space over a field k, for a natural number n. By definition, An
k
is the spectrum of the polynomial ring k[x1,...,xn]. In the spirit of scheme theory, affine n-space can in fact be defined over any commutative ring R, meaning Spec(R[x1,...,xn]).

The category of schemes

Schemes form a category, with morphisms defined as morphisms of locally ringed spaces. (See also: morphism of schemes.) For a scheme Y, a scheme XoverY (or a Y-scheme) means a morphism XY of schemes. A scheme Xover a commutative ring R means a morphism X → Spec(R).

An algebraic variety over a field k can be defined as a scheme over k with certain properties. There are different conventions about exactly which schemes should be called varieties. One standard choice is that a variety over k means an integral separated scheme of finite type over k. [10]

A morphism f: XY of schemes determines a pullback homomorphism on the rings of regular functions, f*: O(Y) → O(X). In the case of affine schemes, this construction gives a one-to-one correspondence between morphisms Spec(A) → Spec(B) of schemes and ring homomorphisms BA. [11] In this sense, scheme theory completely subsumes the theory of commutative rings.

Since Z is an initial object in the category of commutative rings, the category of schemes has Spec(Z) as a terminal object.

For a scheme X over a commutative ring R, an R-point of X means a section of the morphism X → Spec(R). One writes X(R) for the set of R-points of X. In examples, this definition reconstructs the old notion of the set of solutions of the defining equations of X with values in R. When R is a field k, X(k) is also called the set of k-rational points of X.

More generally, for a scheme X over a commutative ring R and any commutative R-algebra S, an S-point of X means a morphism Spec(S) → X over R. One writes X(S) for the set of S-points of X. (This generalizes the old observation that given some equations over a field k, one can consider the set of solutions of the equations in any field extension E of k.) For a scheme X over R, the assignment SX(S) is a functor from commutative R-algebras to sets. It is an important observation that a scheme X over R is determined by this functor of points. [12]

The fiber product of schemes always exists. That is, for any schemes X and Z with morphisms to a scheme Y, the fiber product X×YZ (in the sense of category theory) exists in the category of schemes. If X and Z are schemes over a field k, their fiber product over Spec(k) may be called the productX × Z in the category of k-schemes. For example, the product of affine spaces Am and An over k is affine space Am+n over k.

Since the category of schemes has fiber products and also a terminal object Spec(Z), it has all finite limits.

Examples

Here and below, all the rings considered are commutative:

Examples of morphisms

It is also fruitful to consider examples of morphisms as examples of schemes since they demonstrate their technical effectiveness for encapsulating many objects of study in algebraic and arithmetic geometry.

Arithmetic surfaces

If we consider a polynomial then the affine scheme has a canonical morphism to and is called an arithmetic surface. The fibers are then algebraic curves over the finite fields . If is an elliptic curve then the fibers over its discriminant locus generated by where

[16] are all singular schemes. For example, if is a prime number and

then its discriminant is . In particular, this curve is singular over the prime numbers .

Motivation for schemes

Here are some of the ways in which schemes go beyond older notions of algebraic varieties, and their significance.

Coherent sheaves

A central part of scheme theory is the notion of coherent sheaves, generalizing the notion of (algebraic) vector bundles. For a scheme X, one starts by considering the abelian category of OX-modules , which are sheaves of abelian groups on X that form a module over the sheaf of regular functions OX. In particular, a module M over a commutative ring R determines an associated OX-module ~M on X = Spec(R). A quasi-coherent sheaf on a scheme X means an OX-module that is the sheaf associated to a module on each affine open subset of X. Finally, a coherent sheaf (on a Noetherian scheme X, say) is an OX-module that is the sheaf associated to a finitely generated module on each affine open subset of X.

Coherent sheaves include the important class of vector bundles, which are the sheaves that locally come from finitely generated free modules. An example is the tangent bundle of a smooth variety over a field. However, coherent sheaves are richer; for example, a vector bundle on a closed subscheme Y of X can be viewed as a coherent sheaf on X that is zero outside Y (by the direct image construction). In this way, coherent sheaves on a scheme X include information about all closed subschemes of X. Moreover, sheaf cohomology has good properties for coherent (and quasi-coherent) sheaves. The resulting theory of coherent sheaf cohomology is perhaps the main technical tool in algebraic geometry. [18] [19]

Generalizations

Considered as its functor of points, a scheme is a functor that is a sheaf of sets for the Zariski topology on the category of commutative rings, and that, locally in the Zariski topology, is an affine scheme. This can be generalized in several ways. One is to use the étale topology. Michael Artin defined an algebraic space as a functor that is a sheaf in the étale topology and that, locally in the étale topology, is an affine scheme. Equivalently, an algebraic space is the quotient of a scheme by an étale equivalence relation. A powerful result, the Artin representability theorem, gives simple conditions for a functor to be represented by an algebraic space. [20]

A further generalization is the idea of a stack. Crudely speaking, algebraic stacks generalize algebraic spaces by having an algebraic group attached to each point, which is viewed as the automorphism group of that point. For example, any action of an algebraic group G on an algebraic variety X determines a quotient stack [X/G], which remembers the stabilizer subgroups for the action of G. More generally, moduli spaces in algebraic geometry are often best viewed as stacks, thereby keeping track of the automorphism groups of the objects being classified.

Grothendieck originally introduced stacks as a tool for the theory of descent. In that formulation, stacks are (informally speaking) sheaves of categories. [21] From this general notion, Artin defined the narrower class of algebraic stacks (or "Artin stacks"), which can be considered geometric objects. These include Deligne–Mumford stacks (similar to orbifolds in topology), for which the stabilizer groups are finite, and algebraic spaces, for which the stabilizer groups are trivial. The Keel–Mori theorem says that an algebraic stack with finite stabilizer groups has a coarse moduli space that is an algebraic space.

Another type of generalization is to enrich the structure sheaf, bringing algebraic geometry closer to homotopy theory. In this setting, known as derived algebraic geometry or "spectral algebraic geometry", the structure sheaf is replaced by a homotopical analog of a sheaf of commutative rings (for example, a sheaf of E-infinity ring spectra). These sheaves admit algebraic operations that are associative and commutative only up to an equivalence relation. Taking the quotient by this equivalence relation yields the structure sheaf of an ordinary scheme. Not taking the quotient, however, leads to a theory that can remember higher information, in the same way that derived functors in homological algebra yield higher information about operations such as tensor product and the Hom functor on modules.

See also

Citations

  1. Introduction of the first edition of "Éléments de géométrie algébrique".
  2. Dieudonné 1985, Chapters IV and V.
  3. Dieudonné 1985, sections VII.2 and VII.5.
  4. 1 2 Dieudonné 1985, section VII.4.
  5. Chevalley, C. (1955–1956), Les schémas, Séminaire Henri Cartan, vol. 8
  6. Cartier 2001, note 29.
  7. Dieudonné 1985, sections VII.4, VIII.2, VIII.3.
  8. Hartshorne 1997, section II.2.
  9. Mumford 1999, Chapter II.
  10. Stacks Project, Tag 020D .
  11. Hartshorne 1997, Proposition II.2.3.
  12. Eisenbud & Harris 1998, Proposition VI-2.
  13. Hartshorne 1997, Example II.4.0.1.
  14. Hartshorne 1997, Exercises I.3.6 and III.4.3.
  15. Arapura 2011, section 1.
  16. "Elliptic curves" (PDF). p. 20.
  17. Eisenbud & Harris 1998, Example II-10.
  18. Dieudonné 1985, sections VIII.2 and VIII.3.
  19. Hartshorne 1997, Chapter III.
  20. Stacks Project, Tag 07Y1 .
  21. Vistoli 2005, Definition 4.6.

Related Research Articles

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In algebraic geometry, a finite morphism between two affine varieties is a dense regular map which induces isomorphic inclusion between their coordinate rings, such that is integral over . This definition can be extended to the quasi-projective varieties, such that a regular map between quasiprojective varieties is finite if any point like has an affine neighbourhood V such that is affine and is a finite map.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.

In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology.

This is a glossary of algebraic geometry.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F.

In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion.

References