Generic point

Last updated

In algebraic geometry, a generic pointP of an algebraic variety X is a point in a general position , at which all generic properties are true, a generic property being a property which is true for almost every point.

Contents

In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.

In scheme theory, the spectrum of an integral domain has a unique generic point, which is the zero ideal. As the closure of this point for the Zariski topology is the whole spectrum, the definition has been extended to general topology, where a generic point of a topological space X is a point whose closure is X.

Definition and motivation

A generic point of the topological space X is a point P whose closure is all of X, that is, a point that is dense in X. [1]

The terminology arises from the case of the Zariski topology on the set of subvarieties of an algebraic set: the algebraic set is irreducible (that is, it is not the union of two proper algebraic subsets) if and only if the topological space of the subvarieties has a generic point.

Examples

History

In the foundational approach of André Weil, developed in his Foundations of Algebraic Geometry, generic points played an important role, but were handled in a different manner. For an algebraic variety V over a field K, generic points of V were a whole class of points of V taking values in a universal domain Ω, an algebraically closed field containing K but also an infinite supply of fresh indeterminates. This approach worked, without any need to deal directly with the topology of V (K-Zariski topology, that is), because the specializations could all be discussed at the field level (as in the valuation theory approach to algebraic geometry, popular in the 1930s).

This was at a cost of there being a huge collection of equally generic points. Oscar Zariski, a colleague of Weil's at São Paulo just after World War II, always insisted that generic points should be unique. (This can be put back into topologists' terms: Weil's idea fails to give a Kolmogorov space and Zariski thinks in terms of the Kolmogorov quotient.)

In the rapid foundational changes of the 1950s Weil's approach became obsolete. In scheme theory, though, from 1957, generic points returned: this time à la Zariski. For example for R a discrete valuation ring, Spec(R) consists of two points, a generic point (coming from the prime ideal {0}) and a closed point or special point coming from the unique maximal ideal. For morphisms to Spec(R), the fiber above the special point is the special fiber, an important concept for example in reduction modulo p, monodromy theory and other theories about degeneration. The generic fiber, equally, is the fiber above the generic point. Geometry of degeneration is largely then about the passage from generic to special fibers, or in other words how specialization of parameters affects matters. (For a discrete valuation ring the topological space in question is the Sierpinski space of topologists. Other local rings have unique generic and special points, but a more complicated spectrum, since they represent general dimensions. The discrete valuation case is much like the complex unit disk, for these purposes.)

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Algebraic group</span> Algebraic variety with a group structure

In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest.

In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point.

In mathematics, in particular in algebraic geometry, a complete algebraic variety is an algebraic variety X, such that for any variety Y the projection morphism

In mathematics, specifically group theory, the identity component of a group G refers to several closely related notions of the largest connected subgroup of G containing the identity element.

In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.

In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing p-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of p-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness.

In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : MN is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f."

In algebraic geometry, Zariski's main theorem, proved by Oscar Zariski (1943), is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational.

This is a glossary of algebraic geometry.

References

  1. Mumford, David (2005) [1999]. "II Preschemes". The Red Book of Varieties and Schemes. Springer. p. 67. doi:10.1007/978-3-540-46021-3_2. ISBN   978-3-540-46021-3.