Generic property

Last updated

In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : MN is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.)

Contents

There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are:

There are several natural examples where those notions are not equal. [1] For instance, the set of Liouville numbers is generic in the topological sense, but has Lebesgue measure zero. [2]

In measure theory

In measure theory, a generic property is one that holds almost everywhere. The dual concept is a null set, that is, a set of measure zero.

In probability

In probability, a generic property is an event that occurs almost surely, meaning that it occurs with probability 1. For example, the law of large numbers states that the sample mean converges almost surely to the population mean. This is the definition in the measure theory case specialized to a probability space.

In discrete mathematics

In discrete mathematics, one uses the term almost all to mean cofinite (all but finitely many), cocountable (all but countably many), for sufficiently large numbers, or, sometimes, asymptotically almost surely. The concept is particularly important in the study of random graphs.

In topology

In topology and algebraic geometry, a generic property is one that holds on a dense open set, or more generally on a residual set (a countable intersection of dense open sets), with the dual concept being a closed nowhere dense set, or more generally a meagre set (a countable union of nowhere dense closed sets).

However, density alone is not sufficient to characterize a generic property. This can be seen even in the real numbers, where both the rational numbers and their complement, the irrational numbers, are dense. Since it does not make sense to say that both a set and its complement exhibit typical behavior, both the rationals and irrationals cannot be examples of sets large enough to be typical. Consequently, we rely on the stronger definition above which implies that the irrationals are typical and the rationals are not.

For applications, if a property holds on a residual set, it may not hold for every point, but perturbing it slightly will generally land one inside the residual set (by nowhere density of the components of the meagre set), and these are thus the most important case to address in theorems and algorithms.

In function spaces

A property is generic in Cr if the set holding this property contains a residual subset in the Cr topology. Here Cr is the function space whose members are continuous functions with r continuous derivatives from a manifold M to a manifold N.

The space Cr(M, N), of Cr mappings between M and N, is a Baire space, hence any residual set is dense. This property of the function space is what makes generic properties typical.

In algebraic geometry

Algebraic varieties

A property of an irreducible algebraic variety X is said to be true generically if it holds except on a proper Zariski-closed subset of X, in other words, if it holds on a non-empty Zariski-open subset. This definition agrees with the topological one above, because for irreducible algebraic varieties any non-empty open set is dense.

For example, by the Jacobian criterion for regularity, a generic point of a variety over a field of characteristic zero is smooth. (This statement is known as generic smoothness.) This is true because the Jacobian criterion can be used to find equations for the points which are not smooth: They are exactly the points where the Jacobian matrix of a point of X does not have full rank. In characteristic zero, these equations are non-trivial, so they cannot be true for every point in the variety. Consequently, the set of all non-regular points of X is a proper Zariski-closed subset of X.

Here is another example. Let f : XY be a regular map between two algebraic varieties. For every point y of Y, consider the dimension of the fiber of f over y, that is, dim f1(y). Generically, this number is constant. It is not necessarily constant everywhere. If, say, X is the blowup of Y at a point and f is the natural projection, then the relative dimension of f is zero except at the point which is blown up, where it is dim Y - 1.

Some properties are said to hold very generically. Frequently this means that the ground field is uncountable and that the property is true except on a countable union of proper Zariski-closed subsets (i.e., the property holds on a dense Gδ set). For instance, this notion of very generic occurs when considering rational connectedness. However, other definitions of very generic can and do occur in other contexts.

Generic point

In algebraic geometry, a generic point of an algebraic variety is a point whose coordinates do not satisfy any other algebraic relation than those satisfied by every point of the variety. For example, a generic point of an affine space over a field k is a point whose coordinates are algebraically independent over k.

In scheme theory, where the points are the sub varieties, a generic point of a variety is a point whose closure for the Zariski topology is the whole variety.

A generic property is a property of the generic point. For any reasonable property, it turns out that the property is true generically on the subvariety (in the sense of being true on an open dense subset) if and only if the property is true at the generic point. Such results are frequently proved using the methods of limits of affine schemes developed in EGA IV 8.

General position

A related concept in algebraic geometry is general position, whose precise meaning depends on the context. For example, in the Euclidean plane, three points in general position are not collinear. This is because the property of not being collinear is a generic property of the configuration space of three points in R2.

In computability

In computability and algorithmic randomness, an infinite string of natural numbers is called 1-generic if, for every c.e. set , either has an initial segment in , or has an initial segment such that every extension is not in W. 1-generics are important in computability, as many constructions can be simplified by considering an appropriate 1-generic. [3] Some key properties are:

1-genericity is connected to the topological notion of "generic", as follows. Baire space has a topology with basic open sets for every finite string of natural numbers . Then, an element is 1-generic if and only if it is not on the boundary of any open set. In particular, 1-generics are required to meet every dense open set (though this is a strictly weaker property, called weakly 1-generic).

Genericity results

Related Research Articles

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Probability space</span> Mathematical concept

In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space is said to be first-countable if each point has a countable neighbourhood basis. That is, for each point in there exists a sequence of neighbourhoods of such that for any neighbourhood of there exists an integer with contained in Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods.

In mathematics, a π-system on a set is a collection of certain subsets of such that

Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.

In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

This is a glossary of algebraic geometry.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Hunt, Brian R.; Kaloshin, Vadim Yu. (2010). Prevalence. Handbook of Dynamical Systems. Vol. 3. pp. 43–87. doi:10.1016/s1874-575x(10)00310-3. ISBN   9780444531414.
  2. Oxtoby, John C. (1980). Measure and Category | SpringerLink. Graduate Texts in Mathematics. Vol. 2. doi:10.1007/978-1-4684-9339-9. ISBN   978-1-4684-9341-2.
  3. Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi:10.1007/978-3-642-31933-4_3, ISBN   978-3-642-31932-7 , retrieved 2020-11-01
  4. Polderman, Jan Willem; Willems, Jan C. (1998). Introduction to Mathematical Systems Theory | SpringerLink. Texts in Applied Mathematics. Vol. 26. doi:10.1007/978-1-4757-2953-5. ISBN   978-1-4757-2955-9.