Descent (mathematics)

Last updated

In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification.

Contents

Descent of vector bundles

The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.

Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping

We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism.

The data needed is then this: on each overlap

intersection of Xi and Xj, we'll require mappings

to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example, the composition

for transitivity (and choosing apt notation). The fii should be identity maps and hence symmetry becomes (so that it is fiberwise an isomorphism).

These are indeed standard conditions in fiber bundle theory (see transition map). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers.

Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.

To move closer towards the abstract theory we need to interpret the disjoint union of the

now as

the fiber product (here an equalizer) of two copies of the projection p. The bundles on the Xij that we must control are V and V", the pullbacks to the fiber of V via the two different projection maps to X.

Therefore, by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to re-express the gluing conditions.

History

The ideas were developed in the period 1955–1965 (which was roughly the time at which the requirements of algebraic topology were met but those of algebraic geometry were not). From the point of view of abstract category theory the work of comonads of Beck was a summation of those ideas; see Beck's monadicity theorem.

The difficulties of algebraic geometry with passage to the quotient are acute. The urgency (to put it that way) of the problem for the geometers accounts for the title of the 1959 Grothendieck seminar TDTE on theorems of descent and techniques of existence (see FGA) connecting the descent question with the representable functor question in algebraic geometry in general, and the moduli problem in particular.

Fully faithful descent

Let . Each sheaf F on X gives rise to a descent datum

,

where satisfies the cocycle condition [1]

.

The fully faithful descent says: The functor is fully faithful. Descent theory tells conditions for which there is a fully faithful descent, and when this functor is an equivalence of categories.

See also

Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, and specifically in topology, a CW complex is a topological space that is built by gluing together topological balls of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation.

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the homotopy category Hotc of pointed connected CW complexes, to the category of sets Set, to be a representable functor.

<span class="mw-page-title-main">Mapping cone (topology)</span>

In mathematics, especially homotopy theory, the mapping cone is a construction in topology analogous to a quotient space and denoted . Alternatively, it is also called the homotopy cofiber and also notated . Its dual, a fibration, is called the mapping fiber. The mapping cone can be understood to be a mapping cylinder with the initial end of the cylinder collapsed to a point. Mapping cones are frequently applied in the homotopy theory of pointed spaces.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data.

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.

In mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of limit and colimit extended to the homotopy category . The main idea is this: if we have a diagram

In topology, a branch of mathematics, a graph is a topological space which arises from a usual graph by replacing vertices by points and each edge by a copy of the unit interval , where is identified with the point associated to and with the point associated to . That is, as topological spaces, graphs are exactly the simplicial 1-complexes and also exactly the one-dimensional CW complexes.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline.

References

  1. Descent data for quasi-coherent sheaves, Stacks Project

Further reading

Other possible sources include: