In mathematics, the fiber bundle construction theorem is a theorem which constructs a fiber bundles with a structure group from a given base space, fiber, group, and a suitable set of transition functions. The theorem also gives conditions under which two such bundles are isomorphic.
The theorem is used in the associated bundle construction, where one starts with a given bundle and changes just the fiber, while keeping all other data the same.
Let X and F be topological spaces and let G be a topological group with a continuous left action on F. Given an open cover {Ui} of X and a set of continuous functions
defined on each nonempty overlap, such that the cocycle condition
holds, there exists a fiber bundle E → X with fiber F and structure group G that is trivializable over {Ui} with transition functions tij.
Let E′ be another fiber bundle with the same base space, fiber, structure group, and trivializing neighborhoods, but transition functions t′ij. If the action of G on F is faithful, then E′ and E are isomorphic if and only if there exist functions
such that
i.e. a gauge transformation on transition data.
In particular, given a base, fiber, structure group, group action on the fiber, trivializing neighborhoods, and a set of transition functions, if the action is faithful, then any two fiber bundles constructed are isomorphic. To see it, use the "if" direction of the isomorphism theorem with , where is the identity element of . In other words, the construction is unique up to isomorphism.
The above pair of theorems hold in the topological category. A similar pair of theorems hold in the smooth category, where X and Y are smooth manifolds, G is a Lie group with a smooth left action on Y and the maps tij are all smooth.
Existence is proven constructively by the standard coequalizer construction in category theory.
Take the disjoint union of the product spaces
Define the equivalence relation
Take the quotient , with the projection map The local trivializations are
Let E → X a fiber bundle with fiber F and structure group G, and let F′ be another left G-space. One can form an associated bundle E′ → X with a fiber F′ and structure group G by taking any local trivialization of E and replacing F by F′ in the construction theorem. If one takes F′ to be G with the action of left multiplication then one obtains the associated principal bundle.
{{cite book}}: ISBN / Date incompatibility (help) See Part I, §2.10 and §3.