In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.
In this article, all rings will be assumed to be commutative and with identity.
Let be a commutative graded ring, where
is the direct sum decomposition associated with the gradation. The irrelevant ideal of is the ideal of elements of positive degree
We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,
For brevity we will sometimes write for .
We may define a topology, called the Zariski topology, on by defining the closed sets to be those of the form
where is a homogeneous ideal of . As in the case of affine schemes it is quickly verified that the form the closed sets of a topology on .
Indeed, if are a family of ideals, then we have and if the indexing set I is finite, then .
Equivalently, we may take the open sets as a starting point and define
A common shorthand is to denote by , where is the ideal generated by . For any ideal , the sets and are complementary, and hence the same proof as before shows that the sets form a topology on . The advantage of this approach is that the sets , where ranges over all homogeneous elements of the ring , form a base for this topology, which is an indispensable tool for the analysis of , just as the analogous fact for the spectrum of a ring is likewise indispensable.
We also construct a sheaf on , called the “structure sheaf” as in the affine case, which makes it into a scheme. As in the case of the Spec construction there are many ways to proceed: the most direct one, which is also highly suggestive of the construction of regular functions on a projective variety in classical algebraic geometry, is the following. For any open set of (which is by definition a set of homogeneous prime ideals of not containing ) we define the ring to be the set of all functions
(where denotes the subring of the ring of fractions consisting of fractions of homogeneous elements of the same degree) such that for each prime ideal of :
It follows immediately from the definition that the form a sheaf of rings on , and it may be shown that the pair (, ) is in fact a scheme (this is accomplished by showing that each of the open subsets is in fact an affine scheme).
The essential property of for the above construction was the ability to form localizations for each prime ideal of . This property is also possessed by any graded module over , and therefore with the appropriate minor modifications the preceding section constructs for any such a sheaf, denoted , of -modules on . This sheaf is quasicoherent by construction. If is generated by finitely many elements of degree (e.g. a polynomial ring or a homogenous quotient of it), all quasicoherent sheaves on arise from graded modules by this construction. [1] The corresponding graded module is not unique.
A special case of the sheaf associated to a graded module is when we take to be itself with a different grading: namely, we let the degree elements of be the degree elements of , so
and denote . We then obtain as a quasicoherent sheaf on , denoted or simply , called the twisting sheaf of Serre. It can be checked that is in fact an invertible sheaf.
One reason for the utility of is that it recovers the algebraic information of that was lost when, in the construction of , we passed to fractions of degree zero. In the case Spec A for a ring A, the global sections of the structure sheaf form A itself, whereas the global sections of here form only the degree-zero elements of . If we define
then each contains the degree- information about , denoted , and taken together they contain all the grading information that was lost. Likewise, for any sheaf of graded -modules we define
and expect this “twisted” sheaf to contain grading information about . In particular, if is the sheaf associated to a graded -module we likewise expect it to contain lost grading information about . This suggests, though erroneously, that can in fact be reconstructed from these sheaves; as
however, this is true in the case that is a polynomial ring, below. This situation is to be contrasted with the fact that the spec functor is adjoint to the global sections functor in the category of locally ringed spaces.
If is a ring, we define projective n-space over to be the scheme
The grading on the polynomial ring is defined by letting each have degree one and every element of , degree zero. Comparing this to the definition of , above, we see that the sections of are in fact linear homogeneous polynomials, generated by the themselves. This suggests another interpretation of , namely as the sheaf of “coordinates” for , since the are literally the coordinates for projective -space.
If we let the base ring be , then
has a canonical projective morphism to the affine line whose fibers are elliptic curves except at the points where the curves degenerate into nodal curves. So there is a fibration
which is also a smooth morphism of schemes (which can be checked using the Jacobian criterion).
The projective hypersurface is an example of a Fermat quintic threefold which is also a Calabi–Yau manifold. In addition to projective hypersurfaces, any projective variety cut out by a system of homogeneous polynomials
in -variables can be converted into a projective scheme using the proj construction for the graded algebra
giving an embedding of projective varieties into projective schemes.
Weighted projective spaces can be constructed using a polynomial ring whose variables have non-standard degrees. For example, the weighted projective space corresponds to taking of the ring where have weight while has weight 2.
The proj construction extends to bigraded and multigraded rings. Geometrically, this corresponds to taking products of projective schemes. For example, given the graded rings
with the degree of each generator . Then, the tensor product of these algebras over gives the bigraded algebra
where the have weight and the have weight . Then the proj construction gives
which is a product of projective schemes. There is an embedding of such schemes into projective space by taking the total graded algebra
where a degree element is considered as a degree element. This means the -th graded piece of is the module
In addition, the scheme now comes with bigraded sheaves which are the tensor product of the sheaves where
and
are the canonical projections coming from the injections of these algebras from the tensor product diagram of commutative algebras.
A generalization of the Proj construction replaces the ring S with a sheaf of algebras and produces, as the result, a scheme which might be thought of as a fibration of Proj's of rings. This construction is often used, for example, to construct projective space bundles over a base scheme.
Formally, let X be any scheme and S be a sheaf of graded -algebras (the definition of which is similar to the definition of -modules on a locally ringed space): that is, a sheaf with a direct sum decomposition
where each is an -module such that for every open subset U of X, S(U) is an -algebra and the resulting direct sum decomposition
is a grading of this algebra as a ring. Here we assume that . We make the additional assumption that S is a quasi-coherent sheaf; this is a “consistency” assumption on the sections over different open sets that is necessary for the construction to proceed.
In this setup we may construct a scheme and a “projection” map p onto X such that for every open affine U of X,
This definition suggests that we construct by first defining schemes for each open affine U, by setting
and maps , and then showing that these data can be glued together “over” each intersection of two open affines U and V to form a scheme Y which we define to be . It is not hard to show that defining each to be the map corresponding to the inclusion of into S(U) as the elements of degree zero yields the necessary consistency of the , while the consistency of the themselves follows from the quasi-coherence assumption on S.
If S has the additional property that is a coherent sheaf and locally generates S over (that is, when we pass to the stalk of the sheaf S at a point x of X, which is a graded algebra whose degree-zero elements form the ring then the degree-one elements form a finitely-generated module over and also generate the stalk as an algebra over it) then we may make a further construction. Over each open affine U, Proj S(U) bears an invertible sheaf O(1), and the assumption we have just made ensures that these sheaves may be glued just like the above; the resulting sheaf on is also denoted O(1) and serves much the same purpose for as the twisting sheaf on the Proj of a ring does.
Let be a quasi-coherent sheaf on a scheme . The sheaf of symmetric algebras is naturally a quasi-coherent sheaf of graded -modules, generated by elements of degree 1. The resulting scheme is denoted by . If is of finite type, then its canonical morphism is a projective morphism. [2]
For any , the fiber of the above morphism over is the projective space associated to the dual of the vector space over .
If is a quasi-coherent sheaf of graded -modules, generated by and such that is of finite type, then is a closed subscheme of and is then projective over . In fact, every closed subscheme of a projective is of this form. [3]
As a special case, when is locally free of rank , we get a projective bundle over of relative dimension . Indeed, if we take an open cover of X by open affines such that when restricted to each of these, is free over A, then
and hence is a projective space bundle. Many families of varieties can be constructed as subschemes of these projective bundles, such as the Weierstrass family of elliptic curves. For more details, see the main article.
Global proj can be used to construct Lefschetz pencils. For example, let and take homogeneous polynomials of degree k. We can consider the ideal sheaf of and construct global proj of this quotient sheaf of algebras . This can be described explicitly as the projective morphism .
In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.
In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.
In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with the space of all directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.
In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle.
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In algebraic geometry, a morphism between schemes is said to be smooth if
The concept of a Projective space plays a central role in algebraic geometry. This article aims to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective spaces.
This is a glossary of algebraic geometry.
In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as cdgas, commutative simplicial rings, or commutative ring spectra.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec
In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.