Projective bundle

Last updated

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

Contents

By definition, a scheme X over a Noetherian scheme S is a Pn-bundle if it is locally a projective n-space; i.e., and transition automorphisms are linear. Over a regular scheme S such as a smooth variety, every projective bundle is of the form for some vector bundle (locally free sheaf) E. [1]

The projective bundle of a vector bundle

Every vector bundle over a variety X gives a projective bundle by taking the projective spaces of the fibers, but not all projective bundles arise in this way: there is an obstruction in the cohomology group H2(X,O*). To see why, recall that a projective bundle comes equipped with transition functions on double intersections of a suitable open cover. On triple overlaps, any lift of these transition functions satisfies the cocycle condition up to an invertible function. The collection of these functions forms a 2-cocycle which vanishes in H2(X,O*) only if the projective bundle is the projectivization of a vector bundle. In particular, if X is a compact Riemann surface then H2(X,O*)=0, and so this obstruction vanishes.

The projective bundle of a vector bundle E is the same thing as the Grassmann bundle of 1-planes in E.

The projective bundle P(E) of a vector bundle E is characterized by the universal property that says: [2]

Given a morphism f: TX, to factorize f through the projection map p: P(E) → X is to specify a line subbundle of f*E.

For example, taking f to be p, one gets the line subbundle O(-1) of p*E, called the tautological line bundle on P(E). Moreover, this O(-1) is a universal bundle in the sense that when a line bundle L gives a factorization f = pg, L is the pullback of O(-1) along g. See also Cone#O(1) for a more explicit construction of O(-1).

On P(E), there is a natural exact sequence (called the tautological exact sequence):

where Q is called the tautological quotient-bundle.

Let EF be vector bundles (locally free sheaves of finite rank) on X and G = F/E. Let q: P(F) → X be the projection. Then the natural map O(-1) → q*Fq*G is a global section of the sheaf hom Hom(O(-1), q*G) = q*GO(1). Moreover, this natural map vanishes at a point exactly when the point is a line in E; in other words, the zero-locus of this section is P(E).

A particularly useful instance of this construction is when F is the direct sum E ⊕ 1 of E and the trivial line bundle (i.e., the structure sheaf). Then P(E) is a hyperplane in P(E ⊕ 1), called the hyperplane at infinity, and the complement of P(E) can be identified with E. In this way, P(E ⊕ 1) is referred to as the projective completion (or "compactification") of E.

The projective bundle P(E) is stable under twisting E by a line bundle; precisely, given a line bundle L, there is the natural isomorphism:

such that [3] (In fact, one gets g by the universal property applied to the line bundle on the right.)

Examples

Many non-trivial examples of projective bundles can be found using fibrations over such as Lefschetz fibrations. For example, an elliptic K3 surface is a K3 surface with a fibration

such that the fibers for are generically elliptic curves. Because every elliptic curve is a genus 1 curve with a distinguished point, there exists a global section of the fibration. Because of this global section, there exists a model of giving a morphism to the projective bundle [4]

defined by the Weierstrass equation

where represent the local coordinates of , respectively, and the coefficients

are sections of sheaves on . Note this equation is well-defined because each term in the Weierstrass equation has total degree (meaning the degree of the coefficient plus the degree of the monomial. For example, ).

Cohomology ring and Chow group

Let X be a complex smooth projective variety and E a complex vector bundle of rank r on it. Let p: P(E) → X be the projective bundle of E. Then the cohomology ring H*(P(E)) is an algebra over H*(X) through the pullback p*. Then the first Chern class ζ = c1(O(1)) generates H*(P(E)) with the relation

where ci(E) is the i-th Chern class of E. One interesting feature of this description is that one can define Chern classes as the coefficients in the relation; this is the approach taken by Grothendieck.

Over fields other than the complex field, the same description remains true with Chow ring in place of cohomology ring (still assuming X is smooth). In particular, for Chow groups, there is the direct sum decomposition

As it turned out, this decomposition remains valid even if X is not smooth nor projective. [5] In contrast, Ak(E) = Ak-r(X), via the Gysin homomorphism, morally because that the fibers of E, the vector spaces, are contractible.

See also

Related Research Articles

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

<span class="mw-page-title-main">Complex projective space</span>

In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space. The space is denoted variously as P(Cn+1), Pn(C) or CPn. When n = 1, the complex projective space CP1 is the Riemann sphere, and when n = 2, CP2 is the complex projective plane (see there for a more elementary discussion).

In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.

<span class="mw-page-title-main">Grothendieck–Riemann–Roch theorem</span>

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

<span class="mw-page-title-main">Blowing up</span>

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with all the directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.

In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953).. In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.

The concept of a Projective space plays a central role in algebraic geometry. This article aims to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective spaces.

This is a glossary of algebraic geometry.

In algebraic geometry, given a morphism f: XS of schemes, the cotangent sheaf on X is the sheaf of -modules that represents S-derivations in the sense: for any -modules F, there is an isomorphism

In algebraic geometry, the Grassmann d-plane bundle of a vector bundle E on an algebraic scheme X is a scheme over X:

In algebraic geometry, the problem of residual intersection asks the following:

References

  1. Hartshorne 1977 , Ch. II, Exercise 7.10. (c).
  2. Hartshorne 1977 , Ch. II, Proposition 7.12.
  3. Hartshorne 1977 , Ch. II, Lemma 7.9.
  4. Propp, Oron Y. (2019-05-22). "Constructing explicit K3 spectra". arXiv: 1810.08953 [math.AT].
  5. Fulton 1998 , Theorem 3.3.