Cone (algebraic geometry)

Last updated

In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec

Contents

of a quasi-coherent graded OX-algebra R is called the cone or affine cone of R. Similarly, the relative Proj

is called the projective cone of C or R.

Note: The cone comes with the -action due to the grading of R; this action is a part of the data of a cone (whence the terminology).

Examples

given by . Because of this, is called the abelian hull of the cone For example, if for some ideal sheaf I, then this embedding is the embedding of the normal cone into the normal bundle.

Computations

Consider the complete intersection ideal and let be the projective scheme defined by the ideal sheaf . Then, we have the isomorphism of -algebras is given by[ citation needed ]

Properties

If is a graded homomorphism of graded OX-algebras, then one gets an induced morphism between the cones:

.

If the homomorphism is surjective, then one gets closed immersions

In particular, assuming R0 = OX, the construction applies to the projection (which is an augmentation map) and gives

.

It is a section; i.e., is the identity and is called the zero-section embedding.

Consider the graded algebra R[t] with variable t having degree one: explicitly, the n-th degree piece is

.

Then the affine cone of it is denoted by . The projective cone is called the projective completion of CR. Indeed, the zero-locus t = 0 is exactly and the complement is the open subscheme CR. The locus t = 0 is called the hyperplane at infinity.

O(1)

Let R be a quasi-coherent graded OX-algebra such that R0 = OX and R is locally generated as OX-algebra by R1. Then, by definition, the projective cone of R is:

where the colimit runs over open affine subsets U of X. By assumption R(U) has finitely many degree-one generators xi's. Thus,

Then has the line bundle O(1) given by the hyperplane bundle of ; gluing such local O(1)'s, which agree locally, gives the line bundle O(1) on .

For any integer n, one also writes O(n) for the n-th tensor power of O(1). If the cone C=SpecXR is the total space of a vector bundle E, then O(-1) is the tautological line bundle on the projective bundle P(E).

Remark: When the (local) generators of R have degree other than one, the construction of O(1) still goes through but with a weighted projective space in place of a projective space; so the resulting O(1) is not necessarily a line bundle. In the language of divisor, this O(1) corresponds to a Q-Cartier divisor.

Notes

Related Research Articles

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

<span class="mw-page-title-main">Projective variety</span> Algebraic variety in a projective space

In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

<span class="mw-page-title-main">Linear system of divisors</span> Concept in algebraic geometry

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.

<span class="mw-page-title-main">Blowing up</span> Type of geometric transformation

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with the space of all directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion. The inverse operation is called blowing down.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle.

In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by Friedrich Hirzebruch.

In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In algebraic geometry, a morphism between schemes is said to be smooth if

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953). In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.

This is a glossary of algebraic geometry.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In algebraic geometry, a closed immersion of schemes is a regular embedding of codimension r if each point x in X has an open affine neighborhood U in Y such that the ideal of is generated by a regular sequence of length r. A regular embedding of codimension one is precisely an effective Cartier divisor.

In algebraic geometry, the problem of residual intersection asks the following:

In algebraic geometry, Jouanolou's trick is a theorem that asserts, for an algebraic variety X, the existence of a surjection with affine fibers from an affine variety W to X. The variety W is therefore homotopy-equivalent to X, but it has the technically advantageous property of being affine. Jouanolou's original statement of the theorem required that X be quasi-projective over an affine scheme, but this has since been considerably weakened.

References

Lecture Notes

References