In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.
The normal cone CXY or of an embedding i: X→Y, defined by some sheaf of ideals I is defined as the relative Spec
When the embedding i is regular the normal cone is the normal bundle, the vector bundle on X corresponding to the dual of the sheaf I/I2.
If X is a point, then the normal cone and the normal bundle to it are also called the tangent cone and the tangent space (Zariski tangent space) to the point. When Y = Spec R is affine, the definition means that the normal cone to X = Spec R/I is the Spec of the associated graded ring of R with respect to I.
If Y is the product X × X and the embedding i is the diagonal embedding, then the normal bundle to X in Y is the tangent bundle to X.
The normal cone (or rather its projective cousin) appears as a result of blow-up. Precisely, let be the blow-up of Y along X. Then, by definition, the exceptional divisor is the pre-image ; which is the projective cone of . Thus,
The global sections of the normal bundle classify embedded infinitesimal deformations of Y in X; there is a natural bijection between the set of closed subschemes of Y ×kD, flat over the ring D of dual numbers and having X as the special fiber, and H0(X, NXY). [1]
If are regular embeddings, then is a regular embedding and there is a natural exact sequence of vector bundles on X: [2]
If are regular embeddings of codimensions and if is a regular embedding of codimension then [2] In particular, if is a smooth morphism, then the normal bundle to the diagonal embedding (r-fold) is the direct sum of r − 1 copies of the relative tangent bundle .
If is a closed immersion and if is a flat morphism such that , then [3] [ citation needed ]
If is a smooth morphism and is a regular embedding, then there is a natural exact sequence of vector bundles on X: [4] (which is a special case of an exact sequence for cotangent sheaves.)
For a Cartesian square of schemes with the vertical map, there is a closed embedding of normal cones.
Let be a scheme of finite type over a field and a closed subscheme. If is of pure dimension r; i.e., every irreducible component has dimension r, then is also of pure dimension r. [5] (This can be seen as a consequence of #Deformation to the normal cone.) This property is a key to an application in intersection theory: given a pair of closed subschemes in some ambient space, while the scheme-theoretic intersection has irreducible components of various dimensions, depending delicately on the positions of , the normal cone to is of pure dimension.
Let be an effective Cartier divisor. Then the normal bundle to it (or equivalently the normal cone to it) is [6]
Consider the non-regular embedding [7] : 4–5 then, we can compute the normal cone by first observing If we make the auxiliary variables and we get the relation We can use this to give a presentation of the normal cone as the relative spectrum Since is affine, we can just write out the relative spectrum as the affine scheme giving us the normal cone.
The normal cone's geometry can be further explored by looking at the fibers for various closed points of . Note that geometrically is the union of the -plane with the -axis , so the points of interest are smooth points on the plane, smooth points on the axis, and the point on their intersection. Any smooth point on the plane is given by a map for and either or . Since it is arbitrary which point we take, for convenience let us assume . Hence the fiber of at the point is isomorphic to giving the normal cone as a one dimensional line, as expected. For a point on the axis, this is given by a map hence the fiber at the point is which gives a plane. At the origin , the normal cone over that point is again isomorphic to .
For the nodal cubic curve given by the polynomial over , and the point at the node, the cone has the isomorphism showing the normal cone has more components than the scheme it lies over.
Suppose is an embedding. This can be deformed to the embedding of inside the normal cone (as the zero section) in the following sense: [7] : 6 there is a flat family with generic fiber and special fiber such that there exists a family of closed embeddings over such that
This construction defines a tool analogous to differential topology where non-transverse intersections are performed in a tubular neighborhood of the intersection. Now, the intersection of with a cycle in can be given as the pushforward of an intersection of with the pullback of in .
One application of this is to define intersection products in the Chow ring. Suppose that X and V are closed subschemes of Y with intersection W, and we wish to define the intersection product of X and V in the Chow ring of Y. Deformation to the normal cone in this case means that we replace the embeddings of X and W in Y and V by their normal cones CY(X) and CW(V), so that we want to find the product of X and CWV in CXY. This can be much easier: for example, if X is regularly embedded in Y then its normal cone is a vector bundle, so we are reduced to the problem of finding the intersection product of a subscheme CWV of a vector bundle CXY with the zero section X. However this intersection product is just given by applying the Gysin isomorphism to CWV.
Concretely, the deformation to the normal cone can be constructed by means of blowup. Precisely, let be the blow-up of along . The exceptional divisor is , the projective completion of the normal cone; for the notation used here see Cone (algebraic geometry) § Properties. The normal cone is an open subscheme of and is embedded as a zero-section into .
Now, we note:
Item 1 is clear (check torsion-free-ness). In general, given , we have . Since is already an effective Cartier divisor on , we get yielding . Item 3 follows from the fact the blowdown map π is an isomorphism away from the center . The last two items are seen from explicit local computation. Q.E.D.
Now, the last item in the previous paragraph implies that the image of in M does not intersect . Thus, one gets the deformation of i to the zero-section embedding of X into the normal cone.
Let be a Deligne–Mumford stack locally of finite type over a field . If denotes the cotangent complex of X relative to , then the intrinsic normal bundle [8] : 27 to is the quotient stack which is the stack of fppf -torsors on . A concrete interpretation of this stack quotient can be given by looking at its behavior locally in the etale topos of the stack .
More concretely, suppose there is an étale morphism from an affine finite-type -scheme together with a locally closed immersion into a smooth affine finite-type -scheme . Then one can show meaning we can understand the intrinsic normal bundle as a stacky incarnation for the failure of the normal sequence to be exact on the right hand side. Moreover, for special cases discussed below, we are now considering the quotient as a continuation of the previous sequence as a triangle in some triangulated category. This is because the local stack quotient can be interpreted as in certain cases.
The intrinsic normal cone to , denoted as , [8] : 29 is then defined by replacing the normal bundle with the normal cone ; i.e.,
Example: One has that is a local complete intersection if and only if . In particular, if is smooth, then is the classifying stack of the tangent bundle , which is a commutative group scheme over .
More generally, let is a Deligne-Mumford Type (DM-type) morphism of Artin Stacks which is locally of finite type. Then is characterised as the closed substack such that, for any étale map for which factors through some smooth map (e.g., ), the pullback is:
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.
In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with the space of all directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion. The inverse operation is called blowing down.
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.
In differential geometry, a Sasakian manifold is a contact manifold equipped with a special kind of Riemannian metric , called a Sasakian metric.
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In algebraic geometry, a morphism between schemes is said to be smooth if
In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953). In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.
In differential geometry, the Kosmann lift, named after Yvette Kosmann-Schwarzbach, of a vector field on a Riemannian manifold is the canonical projection on the orthonormal frame bundle of its natural lift defined on the bundle of linear frames.
In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.
This is a glossary of algebraic geometry.
In algebraic geometry, a closed immersion of schemes is a regular embedding of codimension r if each point x in X has an open affine neighborhood U in Y such that the ideal of is generated by a regular sequence of length r. A regular embedding of codimension one is precisely an effective Cartier divisor.
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec
In mathematics, specifically enumerative geometry, the virtual fundamental class of a space is a replacement of the classical fundamental class in its Chow ring which has better behavior with respect to the enumerative problems being considered. In this way, there exists a cycle with can be used for answering specific enumerative problems, such as the number of degree rational curves on a quintic threefold. For example, in Gromov–Witten theory, the Kontsevich moduli spaces
In algebraic geometry, the problem of residual intersection asks the following:
In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.