Normal cone

Last updated

In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.

Contents

Definition

The normal cone CXY or of an embedding i: XY, defined by some sheaf of ideals I is defined as the relative Spec

When the embedding i is regular the normal cone is the normal bundle, the vector bundle on X corresponding to the dual of the sheaf I/I2.

If X is a point, then the normal cone and the normal bundle to it are also called the tangent cone and the tangent space (Zariski tangent space) to the point. When Y = Spec R is affine, the definition means that the normal cone to X = Spec R/I is the Spec of the associated graded ring of R with respect to I.

If Y is the product X × X and the embedding i is the diagonal embedding, then the normal bundle to X in Y is the tangent bundle to X.

The normal cone (or rather its projective cousin) appears as a result of blow-up. Precisely, let

be the blow-up of Y along X. Then, by definition, the exceptional divisor is the pre-image ; which is the projective cone of . Thus,

The global sections of the normal bundle classify embedded infinitesimal deformations of Y in X; there is a natural bijection between the set of closed subschemes of Y ×kD, flat over the ring D of dual numbers and having X as the special fiber, and H0(X, NXY). [1]

Properties

Compositions of regular embeddings

If are regular embeddings, then is a regular embedding and there is a natural exact sequence of vector bundles on X: [2]

If are regular embeddings of codimensions and if is a regular embedding of codimension

then [2]

In particular, if is a smooth morphism, then the normal bundle to the diagonal embedding

(r-fold) is the direct sum of r − 1 copies of the relative tangent bundle .

If is a closed immersion and if is a flat morphism such that , then [3] [ citation needed ]

If is a smooth morphism and is a regular embedding, then there is a natural exact sequence of vector bundles on X: [4]

(which is a special case of an exact sequence for cotangent sheaves.)

Cartesian square

For a Cartesian square of schemes

with the vertical map, there is a closed embedding

of normal cones.

Dimension of components

Let be a scheme of finite type over a field and a closed subscheme. If is of pure dimension r; i.e., every irreducible component has dimension r, then is also of pure dimension r. [5] (This can be seen as a consequence of #Deformation to the normal cone.) This property is a key to an application in intersection theory: given a pair of closed subschemes in some ambient space, while the scheme-theoretic intersection has irreducible components of various dimensions, depending delicately on the positions of , the normal cone to is of pure dimension.

Examples

Let be an effective Cartier divisor. Then the normal bundle to it (or equivalently the normal cone to it) is [6]

Non-regular Embedding

Consider the non-regular embedding [7] :4–5

then, we can compute the normal cone by first observing

If we make the auxiliary variables and we get the relation

We can use this to give a presentation of the normal cone as the relative spectrum

Since is affine, we can just write out the relative spectrum as the affine scheme

giving us the normal cone.

Geometry of this normal cone

The normal cone's geometry can be further explored by looking at the fibers for various closed points of . Note that geometrically is the union of the -plane with the -axis ,

so the points of interest are smooth points on the plane, smooth points on the axis, and the point on their intersection. Any smooth point on the plane is given by a map

for and either or . Since it's arbitrary which point we take, for convenience let's assume . Hence the fiber of at the point is isomorphic to

giving the normal cone as a one dimensional line, as expected. For a point on the axis, this is given by a map

hence the fiber at the point is

which gives a plane. At the origin , the normal cone over that point is again isomorphic to .

Nodal cubic

For the nodal cubic curve given by the polynomial over , and the point at the node, the cone has the isomorphism

showing the normal cone has more components than the scheme it lies over.

Deformation to the normal cone

Suppose is an embedding. This can be deformed to the embedding of inside the normal cone (as the zero section) in the following sense: [7] :6 there is a flat family

with generic fiber and special fiber such that there exists a family of closed embeddings

over such that

  1. Over any point the associated embeddings are an embedding
  2. The fiber over is the embedding of given by the zero section.

This construction defines a tool analogous to differential topology where non-transverse intersections are performed in a tubular neighborhood of the intersection. Now, the intersection of with a cycle in can be given as the pushforward of an intersection of with the pullback of in .

Construction

One application of this is to define intersection products in the Chow ring. Suppose that X and V are closed subschemes of Y with intersection W, and we wish to define the intersection product of X and V in the Chow ring of Y. Deformation to the normal cone in this case means that we replace the embeddings of X and W in Y and V by their normal cones CY(X) and CW(V), so that we want to find the product of X and CWV in CXY. This can be much easier: for example, if X is regularly embedded in Y then its normal cone is a vector bundle, so we are reduced to the problem of finding the intersection product of a subscheme CWV of a vector bundle CXY with the zero section X. However this intersection product is just given by applying the Gysin isomorphism to CWV.

Concretely, the deformation to the normal cone can be constructed by means of blowup. Precisely, let

be the blow-up of along . The exceptional divisor is , the projective completion of the normal cone; for the notation used here see Cone (algebraic geometry) § Properties. The normal cone is an open subscheme of and is embedded as a zero-section into .

Now, we note:

  1. The map , the followed by projection, is flat.
  2. There is an induced closed embedding
    that is a morphism over .
  3. M is trivial away from zero; i.e., and restricts to the trivial embedding
  4. as the divisor is the sum
    where is the blow-up of Y along X and is viewed as an effective Cartier divisor.
  5. As divisors and intersect at , where sits at infinity in .

Item 1 is clear (check torsion-free-ness). In general, given , we have . Since is already an effective Cartier divisor on , we get

yielding . Item 3 follows from the fact the blowdown map π is an isomorphism away from the center . The last two items are seen from explicit local computation. Q.E.D.

Now, the last item in the previous paragraph implies that the image of in M does not intersect . Thus, one gets the deformation of i to the zero-section embedding of X into the normal cone.

Intrinsic normal cone

Intrinsic normal bundle

Let be a Deligne–Mumford stack locally of finite type over a field . If denotes the cotangent complex of X relative to , then the intrinsic normal bundle [8] :27 to is the quotient stack

which is the stack of fppf -torsors on . A concrete interpretation of this stack quotient can be given by looking at its behavior locally in the etale topos of the stack .

Properties of intrinsic normal bundle

More concretely, suppose there is an étale morphism from an affine finite-type -scheme together with a locally closed immersion into a smooth affine finite-type -scheme . Then one can show

meaning we can understand the intrinsic normal bundle as a stacky incarnation for the failure of the normal sequence

to be exact on the right hand side. Moreover, for special cases discussed below, we are now considering the quotient as a continuation of the previous sequence as a triangle in some triangulated category. This is because the local stack quotient can be interpreted as

in certain cases.

Normal cone

The intrinsic normal cone to , denoted as , [8] :29 is then defined by replacing the normal bundle with the normal cone ; i.e.,

Example: One has that is a local complete intersection if and only if . In particular, if is smooth, then is the classifying stack of the tangent bundle , which is a commutative group scheme over .

More generally, let is a Deligne-Mumford Type (DM-type) morphism of Artin Stacks which is locally of finite type. Then is characterised as the closed substack such that, for any étale map for which factors through some smooth map (e.g., ), the pullback is:

See also

Notes

  1. Hartshorne 1977, p. Ch. III, Exercise 9.7..
  2. 1 2 Fulton 1998, p. Appendix B.7.4..
  3. Fulton 1998, p. The first part of the proof of Theorem 6.5..
  4. Fulton 1998, p. Appendix B 7.1..
  5. Fulton 1998, p. Appendix B. 6.6..
  6. Fulton 1998, p. Appendix B.6.2..
  7. 1 2 Battistella, Luca; Carocci, Francesca; Manolache, Cristina (2020-04-09). "Virtual classes for the working mathematician". Symmetry, Integrability and Geometry: Methods and Applications. arXiv: 1804.06048 . doi: 10.3842/SIGMA.2020.026 .
  8. 1 2 Behrend, K.; Fantechi, B. (1997-03-19). "The intrinsic normal cone". Inventiones Mathematicae. 128 (1): 45–88. arXiv: alg-geom/9601010 . doi:10.1007/s002220050136. ISSN   0020-9910. S2CID   18533009.

Related Research Articles

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

<span class="mw-page-title-main">Linear system of divisors</span>

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

<span class="mw-page-title-main">Blowing up</span>

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with the space of all directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

In differential geometry, a Sasakian manifold is a contact manifold equipped with a special kind of Riemannian metric , called a Sasakian metric.

In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.

In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by Gysin, and is generalized by the Serre spectral sequence.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak.

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953).. In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.

This is a glossary of algebraic geometry.

In algebraic geometry, a closed immersion of schemes is a regular embedding of codimension r if each point x in X has an open affine neighborhood U in Y such that the ideal of is generated by a regular sequence of length r. A regular embedding of codimension one is precisely an effective Cartier divisor.

In mathematics, cocompact embeddings are embeddings of normed vector spaces possessing a certain property similar to but weaker than compactness. Cocompactness has been in use in mathematical analysis since the 1980s, without being referred to by any name ,(Lemma 2.5),(Theorem 1), or by ad-hoc monikers such as vanishing lemma or inverse embedding.

In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec

In mathematics, specifically enumerative geometry, the virtual fundamental class of a space is a replacement of the classical fundamental class in its Chow ring which has better behavior with respect to the enumerative problems being considered. In this way, there exists a cycle with can be used for answering specific enumerative problems, such as the number of degree rational curves on a quintic threefold. For example, in Gromov–Witten theory, the Kontsevich moduli spaces

In algebraic geometry, the problem of residual intersection asks the following:

References