Associated graded ring

Last updated

In mathematics, the associated graded ring of a ring R with respect to a proper ideal I is the graded ring:

Contents

.

Similarly, if M is a left R-module, then the associated graded module is the graded module over :

.

Basic definitions and properties

For a ring R and ideal I, multiplication in is defined as follows: First, consider homogeneous elements and and suppose is a representative of a and is a representative of b. Then define to be the equivalence class of in . Note that this is well-defined modulo . Multiplication of inhomogeneous elements is defined by using the distributive property.

A ring or module may be related to its associated graded ring or module through the initial form map. Let M be an R-module and I an ideal of R. Given , the initial form of f in , written , is the equivalence class of f in where m is the maximum integer such that . If for every m, then set . The initial form map is only a map of sets and generally not a homomorphism. For a submodule , is defined to be the submodule of generated by . This may not be the same as the submodule of generated by the only initial forms of the generators of N.

A ring inherits some "good" properties from its associated graded ring. For example, if R is a noetherian local ring, and is an integral domain, then R is itself an integral domain. [1]

gr of a quotient module

Let be left modules over a ring R and I an ideal of R. Since

(the last equality is by modular law), there is a canonical identification: [2]

where

called the submodule generated by the initial forms of the elements of .

Examples

Let U be the universal enveloping algebra of a Lie algebra over a field k; it is filtered by degree. The Poincaré–Birkhoff–Witt theorem implies that is a polynomial ring; in fact, it is the coordinate ring .

The associated graded algebra of a Clifford algebra is an exterior algebra; i.e., a Clifford algebra degenerates to an exterior algebra.

Generalization to multiplicative filtrations

The associated graded can also be defined more generally for multiplicative descending filtrations of R (see also filtered ring.) Let F be a descending chain of ideals of the form

such that . The graded ring associated with this filtration is . Multiplication and the initial form map are defined as above.

See also

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

<span class="mw-page-title-main">Ideal (ring theory)</span> Additive subgroup of a mathematical ring that absorbs multiplication

In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

<span class="mw-page-title-main">Module (mathematics)</span> Generalization of vector spaces from fields to rings

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,

In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, the symmetric algebraS(V) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = gi, where i is the inclusion map of V in S(V).

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).

In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work.

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.

In commutative algebra, the Rees algebra of an ideal I in a commutative ring R is defined to be

This is a glossary of commutative algebra.

References

  1. Eisenbud 1995 , Corollary 5.5
  2. Zariski & Samuel 1975 , Ch. VIII, a paragraph after Theorem 1.