Segre class

Last updated

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Beniamino Segre (1953). [1] In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role. [2]

Contents

Definition

Suppose that is a cone over , that is the projection from the projective completion of to , and that is the anti-tautological line bundle on . Viewing the Chern class as a group endomorphism of the Chow group of , the total Segre class of is given by:

The th Segre class is simply the th graded piece of . If is of pure dimension over then this is given by:

The reason for using rather than is that this makes the total Segre class stable under addition of the trivial bundle .

If Z is a closed subscheme of an algebraic scheme X, then denote the Segre class of the normal cone to .

Relation to Chern classes for vector bundles

For a holomorphic vector bundle over a complex manifold a total Segre class is the inverse to the total Chern class , see e.g. Fulton (1998). [3]

Explicitly, for a total Chern class

one gets the total Segre class

where

Let be Chern roots, i.e. formal eigenvalues of where is a curvature of a connection on .

While the Chern class c(E) is written as

where is an elementary symmetric polynomial of degree in variables ,

the Segre for the dual bundle which has Chern roots is written as

Expanding the above expression in powers of one can see that is represented by a complete homogeneous symmetric polynomial of .

Properties

Here are some basic properties.

A key property of a Segre class is birational invariance: this is contained in the following. Let be a proper morphism between algebraic schemes such that is irreducible and each irreducible component of maps onto . Then, for each closed subscheme , and the restriction of ,

[8]

Similarly, if is a flat morphism of constant relative dimension between pure-dimensional algebraic schemes, then, for each closed subscheme , and the restriction of ,

[9]

A basic example of birational invariance is provided by a blow-up. Let be a blow-up along some closed subscheme Z. Since the exceptional divisor is an effective Cartier divisor and the normal cone (or normal bundle) to it is ,

where we used the notation . [10] Thus,

where is given by .

Examples

Example 1

Let Z be a smooth curve that is a complete intersection of effective Cartier divisors on a variety X. Assume the dimension of X is n + 1. Then the Segre class of the normal cone to is: [11]

Indeed, for example, if Z is regularly embedded into X, then, since is the normal bundle and (see Normal cone#Properties), we have:

Example 2

The following is Example 3.2.22. of Fulton (1998). [2] It recovers some classical results from Schubert's book on enumerative geometry.

Viewing the dual projective space as the Grassmann bundle parametrizing the 2-planes in , consider the tautological exact sequence

where are the tautological sub and quotient bundles. With , the projective bundle is the variety of conics in . With , we have and so, using Chern class#Computation formulae,

and thus

where The coefficients in have the enumerative geometric meanings; for example, 92 is the number of conics meeting 8 general lines.

Example 3

Let X be a surface and effective Cartier divisors on it. Let be the scheme-theoretic intersection of and (viewing those divisors as closed subschemes). For simplicity, suppose meet only at a single point P with the same multiplicity m and that P is a smooth point of X. Then [12]

To see this, consider the blow-up of X along P and let , the strict transform of Z. By the formula at #Properties,

Since where , the formula above results.

Multiplicity along a subvariety

Let be the local ring of a variety X at a closed subvariety V codimension n (for example, V can be a closed point). Then is a polynomial of degree n in t for large t; i.e., it can be written as the lower-degree terms and the integer is called the multiplicity of A.

The Segre class of encodes this multiplicity: the coefficient of in is . [13]

References

  1. Segre 1953
  2. 1 2 Fulton 1998
  3. Fulton 1998 , p.50.
  4. Fulton 1998 , Example 4.1.1.
  5. Fulton 1998 , Example 4.1.5.
  6. 1 2 Fulton 1998 , Proposition 3.1.
  7. Fulton 1998 , Example 3.1.1.
  8. Fulton 1998 , Proposition 4.2. (a)
  9. Fulton 1998 , Proposition 4.2. (b)
  10. Fulton 1998 , § 2.5.
  11. Fulton 1998 , Example 9.1.1.
  12. Fulton 1998 , Example 4.2.2.
  13. Fulton 1998 , Example 4.3.1.

Bibliography