Segre class

Last updated

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953). [1] . In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role. [2]

Contents

Definition

Suppose is a cone over , is the projection from the projective completion of to , and is the anti-tautological line bundle on . Viewing the Chern class as a group endomorphism of the Chow group of , the total Segre class of is given by:

The th Segre class is simply the th graded piece of . If is of pure dimension over then this is given by:

The reason for using rather than is that this makes the total Segre class stable under addition of the trivial bundle .

If Z is a closed subscheme of an algebraic scheme X, then denote the Segre class of the normal cone to .

Relation to Chern classes for vector bundles

For a holomorphic vector bundle over a complex manifold a total Segre class is the inverse to the total Chern class , see e.g. Fulton (1998). [3]

Explicitly, for a total Chern class

one gets the total Segre class

where

Let be Chern roots, i.e. formal eigenvalues of where is a curvature of a connection on .

While the Chern class c(E) is written as

where is an elementary symmetric polynomial of degree in variables

the Segre for the dual bundle which has Chern roots is written as

Expanding the above expression in powers of one can see that is represented by a complete homogeneous symmetric polynomial of

Properties

Here are some basic properties.

A key property of a Segre class is birational invariance: this is contained in the following. Let be a proper morphism between algebraic schemes such that is irreducible and each irreducible component of maps onto . Then, for each closed subscheme , and the restriction of ,

[8]

Similarly, if is a flat morphism of constant relative dimension between pure-dimensional algebraic schemes, then, for each closed subscheme , and the restriction of ,

[9]

A basic example of binational invariance is provided by a blow-up. Let be a blow-up along some closed subscheme Z. Since the exceptional divisor is an effective Cartier divisor and the normal cone (or normal bundle) to it is ,

where we used the notation . [10] Thus,

where is given by .

Examples

Example 1

Let Z be a smooth curve that is a complete intersection of effective Cartier divisors on a variety X. Assume the dimension of X is n + 1. Then the Segre class of the normal cone to is: [11]

Indeed, for example, if Z is regularly embedded into X, then, since is the normal bundle and (see Normal cone#Properties), we have:

Example 2

The following is Example 3.2.22. of Fulton (1998). [12] It recovers some classical results from Schubert's book on enumerative geometry.

Viewing the dual projective space as the Grassmann bundle parametrizing the 2-planes in , consider the tautological exact sequence

where are the tautological sub and quotient bundles. With , the projective bundle is the variety of conics in . With , we have and so, using Chern class#Computation formulae,

and thus

where The coefficients in have the enumerative geometric meanings; for example, 92 is the number of conics meeting 8 general lines.

See also: Residual intersection#Example: conics tangent to given five conics.

Example 3

Let X be a surface and effective Cartier divisors on it. Let be the scheme-theoretic intersection of and (viewing those divisors as closed subschemes). For simplicity, suppose meet only at a single point P with the same multiplicity m and that P is a smooth point of X. Then [13]

To see this, consider the blow-up of X along P and let , the strict transform of Z. By the formula at #Properties,

Since where , the formula above results.

Multiplicity along a subvariety

Let be the local ring of a variety X at a closed subvariety V codimension n (for example, V can be a closed point). Then is a polynomial of degree n in t for large t; i.e., it can be written as the lower-degree terms and the integer is called the multiplicity of A.

The Segre class of encodes this multiplicity: the coefficient of in is . [14]

Related Research Articles

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In mathematics, the Todd class is a certain construction now considered a part of the theory in algebraic topology of characteristic classes. The Todd class of a vector bundle can be defined by means of the theory of Chern classes, and is encountered where Chern classes exist — most notably in differential topology, the theory of complex manifolds and algebraic geometry. In rough terms, a Todd class acts like a reciprocal of a Chern class, or stands in relation to it as a conormal bundle does to a normal bundle.

In mathematics, the Grothendieck group construction constructs an abelian group from a commutative monoid M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry. It was a precursor of several more modern theories, for example characteristic classes, and in particular its algorithmic aspects are still of current interest. The phrase "Schubert calculus" is sometimes used to mean the enumerative geometry of linear subspaces, roughly equivalent to describing the cohomology ring of Grassmannians, and sometimes used to mean the more general enumerative geometry of nonlinear varieties. Even more generally, “Schubert calculus” is often understood to encompass the study of analogous questions in generalized cohomology theories.

In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by Friedrich Hirzebruch (1951).

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.

In mathematics, the Euler sequence is a particular exact sequence of sheaves on n-dimensional projective space over a ring. It shows that the sheaf of relative differentials is stably isomorphic to an (n + 1)-fold sum of the dual of the Serre twisting sheaf.

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

In algebraic geometry, the Quot scheme is a scheme parametrizing locally free sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

In algebraic geometry, the problem of residual intersection asks the following:

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

References

  1. Segre 1953
  2. Fulton 1998
  3. Fulton 1998 , p.50.
  4. Fulton 1998 , Example 4.1.1.
  5. Fulton 1998 , Example 4.1.5.
  6. 1 2 Fulton 1998 , Proposition 3.1.
  7. Fulton 1998 , Example 3.1.1.
  8. Fulton 1998 , Proposition 4.2. (a)
  9. Fulton 1998 , Proposition 4.2. (b)
  10. Fulton 1998 , § 2.5.
  11. Fulton 1998 , Example 9.1.1.
  12. Fulton 1998
  13. Fulton 1998 , Example 4.2.2.
  14. Fulton 1998 , Example 4.3.1.

Bibliography