Sheaf of algebras

Last updated

In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of -modules. It is quasi-coherent if it is so as a module.

Contents

When X is a scheme, just like a ring, one can take the global Spec of a quasi-coherent sheaf of algebras: this results in the contravariant functor from the category of quasi-coherent (sheaves of) -algebras on X to the category of schemes that are affine over X (defined below). Moreover, it is an equivalence: the quasi-inverse is given by sending an affine morphism to [1]

Affine morphism

A morphism of schemes is called affine if has an open affine cover 's such that are affine. [2] For example, a finite morphism is affine. An affine morphism is quasi-compact and separated; in particular, the direct image of a quasi-coherent sheaf along an affine morphism is quasi-coherent.

The base change of an affine morphism is affine. [3]

Let be an affine morphism between schemes and a locally ringed space together with a map . Then the natural map between the sets:

is bijective. [4]

Examples

The formation of direct images

Given a ringed space S, there is the category of pairs consisting of a ringed space morphism and an -module . Then the formation of direct images determines the contravariant functor from to the category of pairs consisting of an -algebra A and an A-module M that sends each pair to the pair .

Now assume S is a scheme and then let be the subcategory consisting of pairs such that is an affine morphism between schemes and a quasi-coherent sheaf on . Then the above functor determines the equivalence between and the category of pairs consisting of an -algebra A and a quasi-coherent -module . [5]

The above equivalence can be used (among other things) to do the following construction. As before, given a scheme S, let A be a quasi-coherent -algebra and then take its global Spec: . Then, for each quasi-coherent A-module M, there is a corresponding quasi-coherent -module such that called the sheaf associated to M. Put in another way, determines an equivalence between the category of quasi-coherent -modules and the quasi-coherent -modules.

See also

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.

In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In algebraic geometry, a noetherian scheme is a scheme that admits a finite covering by open affine subsets , noetherian rings. More generally, a scheme is locally noetherian if it is covered by spectra of noetherian rings. Thus, a scheme is noetherian if and only if it is locally noetherian and quasi-compact. As with noetherian rings, the concept is named after Emmy Noether.

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

This is a glossary of algebraic geometry.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

In algebraic geometry, given a morphism f: XS of schemes, the cotangent sheaf on X is the sheaf of -modules that represents S-derivations in the sense: for any -modules F, there is an isomorphism

In algebraic geometry, a closed immersion of schemes is a regular embedding of codimension r if each point x in X has an open affine neighborhood U in Y such that the ideal of is generated by a regular sequence of length r. A regular embedding of codimension one is precisely an effective Cartier divisor.

In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X, the relative Spec

References

  1. EGA 1971 , Ch. I, Théorème 9.1.4.
  2. EGA 1971 , Ch. I, Definition 9.1.1.
  3. Stacks Project, Tag 01S5 .
  4. EGA 1971 , Ch. I, Proposition 9.1.5.
  5. EGA 1971 , Ch. I, Théorème 9.2.1.