This is a glossary of algebraic geometry.
See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry.
For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. ... The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axiomatic spirit, which then determined the development of mathematics. ... Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics.
From the preface to I.R. Shafarevich, Basic Algebraic Geometry.
While much of the early work on moduli, especially since [Mum65], put the emphasis on the construction of fine or coarse moduli spaces, recently the emphasis shifted towards the study of the families of varieties, that is towards moduli functors and moduli stacks. The main task is to understand what kind of objects form "nice" families. Once a good concept of "nice families" is established, the existence of a coarse moduli space should be nearly automatic. The coarse moduli space is not the fundamental object any longer, rather it is only a convenient way to keep track of certain information that is only latent in the moduli functor or moduli stack.
Kollár, János, Chapter 1, "Book on Moduli of Surfaces".
Geometric points are what in the most classical cases, for example algebraic varieties that are complex manifolds, would be the ordinary-sense points. The points of the underlying space include analogues of the generic points (in the sense of Zariski, not that of André Weil), which specialise to ordinary-sense points. The -valued points are thought of, via Yoneda's lemma, as a way of identifying with the representable functor it sets up. Historically there was a process by which projective geometry added more points (e.g. complex points, line at infinity) to simplify the geometry by refining the basic objects. The -valued points were a massive further step.
As part of the predominating Grothendieck approach, there are three corresponding notions of fiber of a morphism: the first being the simple inverse image of a point. The other two are formed by creating fiber products of two morphisms. For example, a geometric fiber of a morphism is thought of as .
This makes the extension from affine schemes, where it is just the tensor product of R-algebras, to all schemes of the fiber product operation a significant (if technically anodyne) result.On Grothendieck's own view there should be almost no history of schemes, but only a history of the resistance to them: ... There is no serious historical question of how Grothendieck found his definition of schemes. It was in the air. Serre has well said that no one invented schemes (conversation 1995). The question is, what made Grothendieck believe he should use this definition to simplify an 80 page paper by Serre into some 1000 pages of Éléments de géométrie algébrique ?
The higher-dimensional analog of étale morphisms are smooth morphisms. There are many different characterisations of smoothness. The following are equivalent definitions of smoothness of the morphism f : Y → X:
In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety amounts to understanding the different ways of mapping into projective spaces. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.
In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective.
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets , where each is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether.
In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry.
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space, refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by Alexander Grothendieck. Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The functor F is then said to be naturally equivalent to the functor of points of X; and the scheme X is said to represent the functor F, and to classify geometric objects over S given by F.
In algebraic geometry, a relative effective Cartier divisor is roughly a family of effective Cartier divisors. Precisely, an effective Cartier divisor in a scheme X over a ring R is a closed subscheme D of X that (1) is flat over R and (2) the ideal sheaf of D is locally free of rank one. Equivalently, a closed subscheme D of X is an effective Cartier divisor if there is an open affine cover of X and nonzerodivisors such that the intersection is given by the equation and is flat over R and such that they are compatible.
In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of -modules. It is quasi-coherent if it is so as a module.