Hyperconnected space

Last updated

In the mathematical field of topology, a hyperconnected space [1] or irreducible space [2] is a topological space X that cannot be written as the union of two proper closed sets (whether disjoint or non-disjoint). The name irreducible space is preferred in algebraic geometry.

Contents

For a topological space X the following conditions are equivalent:

A space which satisfies any one of these conditions is called hyperconnected or irreducible. Due to the condition about neighborhoods of distinct points being in a sense the opposite of the Hausdorff property, some authors call such spaces anti-Hausdorff. [3]

An irreducible set is a subset of a topological space for which the subspace topology is irreducible. Some authors do not consider the empty set to be irreducible (even though it vacuously satisfies the above conditions).

Examples

Two examples of hyperconnected spaces from point set topology are the cofinite topology on any infinite set and the right order topology on .

In algebraic geometry, taking the spectrum of a ring whose reduced ring is an integral domain is an irreducible topological space—applying the lattice theorem to the nilradical, which is within every prime, to show the spectrum of the quotient map is a homeomorphism, this reduces to the irreducibility of the spectrum of an integral domain. For example, the schemes

,

are irreducible since in both cases the polynomials defining the ideal are irreducible polynomials (meaning they have no non-trivial factorization). A non-example is given by the normal crossing divisor

since the underlying space is the union of the affine planes , , and . Another non-example is given by the scheme

where is an irreducible degree 4 homogeneous polynomial. This is the union of the two genus 3 curves (by the genus–degree formula)

Hyperconnectedness vs. connectedness

Every hyperconnected space is both connected and locally connected (though not necessarily path-connected or locally path-connected).

Note that in the definition of hyper-connectedness, the closed sets don't have to be disjoint. This is in contrast to the definition of connectedness, in which the open sets are disjoint.

For example, the space of real numbers with the standard topology is connected but not hyperconnected. This is because it cannot be written as a union of two disjoint open sets, but it can be written as a union of two (non-disjoint) closed sets.

Properties

Proof: Let be an open subset. Any two disjoint open subsets of would themselves be disjoint open subsets of . So at least one of them must be empty.
Proof: Suppose is a dense subset of and with , closed in . Then . Since is hyperconnected, one of the two closures is the whole space , say . This implies that is dense in , and since it is closed in , it must be equal to .
Counterexample: with an algebraically closed field (thus infinite) is hyperconnected [6] in the Zariski topology, while is closed and not hyperconnected.
Proof: Suppose where is irreducible and write for two closed subsets (and thus in ). are closed in and which implies or , but then or by definition of closure.
Proof: Firstly, we notice that if is a non-empty open set in then it intersects both and ; indeed, suppose , then is dense in , thus and is a point of closure of which implies and a fortiori . Now and taking the closure therefore is a non-empty open and dense subset of . Since this is true for every non-empty open subset, is irreducible.

Irreducible components

An irreducible component [9] in a topological space is a maximal irreducible subset (i.e. an irreducible set that is not contained in any larger irreducible set). The irreducible components are always closed.

Every irreducible subset of a space X is contained in a (not necessarily unique) irreducible component of X. [10] In particular, every point of X is contained in some irreducible component of X. Unlike the connected components of a space, the irreducible components need not be disjoint (i.e. they need not form a partition). In general, the irreducible components will overlap.

The irreducible components of a Hausdorff space are just the singleton sets.

Since every irreducible space is connected, the irreducible components will always lie in the connected components.

Every Noetherian topological space has finitely many irreducible components. [11]

See also

Notes

  1. Steen & Seebach, p. 29
  2. "Section 5.8 (004U): Irreducible components—The Stacks project".
  3. Van Douwen, Eric K. (1993). "An anti-Hausdorff Fréchet space in which convergent sequences have unique limits". Topology and Its Applications. 51 (2): 147–158. doi: 10.1016/0166-8641(93)90147-6 .
  4. Bourbaki, Nicolas (1989). Commutative Algebra: Chapters 1-7. Springer. p. 95. ISBN   978-3-540-64239-8.
  5. Bourbaki, Nicolas (1989). Commutative Algebra: Chapters 1-7. Springer. p. 95. ISBN   978-3-540-64239-8.
  6. Perrin, Daniel (2008). Algebraic Geometry. An introduction. Springer. p. 14. ISBN   978-1-84800-055-1.
  7. "Lemma 5.8.3 (004W)—The Stacks project".
  8. Bourbaki, Nicolas (1989). Commutative Algebra: Chapters 1-7. Springer. p. 95. ISBN   978-3-540-64239-8.
  9. "Definition 5.8.1 (004V)—The Stacks project".
  10. "Lemma 5.8.3 (004W)—The Stacks project".
  11. "Section 5.9 (0050): Noetherian topological spaces—The Stacks project".

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

<span class="mw-page-title-main">Connected space</span> Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

<span class="mw-page-title-main">Boundary (topology)</span> All points not part of the interior of a subset of a topological space

In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, Metric Spaces by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defined as the intersection of a set with the closure of the border of its complement.

In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces as well as to the separation axioms for topological spaces.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, the Sierpiński space is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In general topology and related areas of mathematics, the final topology on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous.

<span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

This is a glossary of algebraic geometry.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

References