Spherical variety

Last updated

In algebraic geometry, given a reductive algebraic group G and a Borel subgroup B, a spherical variety is a G-variety with an open dense B-orbit. It is sometimes also assumed to be normal. Examples are flag varieties, symmetric spaces and (affine or projective) toric varieties.

There is also a notion of real spherical varieties.

A projective spherical variety is a Mori dream space. [1]

Spherical embeddings are classified by so-called colored fans, a generalization of fans for toric varieties; this is known as Luna-Vust Theory.

In his seminal paper, Luna (2001) develops a framework to classify complex spherical subgroups of reductive groups; he reduces the classification of spherical subgroups to wonderful subgroups. He works out completely the case of groups of type A and conjectures that the combinatorial objects (homogeneous spherical data) he introduces indeed provide a combinatorial classification of spherical subgroups. This has been known as the Luna Conjecture. This classification is now completed according to Luna's program; see contributions of Bravi, Cupit-Foutou, Losev and Pezzini.

As conjectured by Knop, every "smooth" affine spherical variety is uniquely determined by its weight monoid. This uniqueness result has been proved by Losev.

Knop (2013) has been developing a program to classify spherical varieties in arbitrary characteristic.

Related Research Articles

In representation theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."

Jacques Tits Belgian mathematician

Jacques Tits was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric.

In mathematics, a building is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

Geometric group theory

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

In the mathematical area of group theory, Artin groups, also known as Artin–Tits groups or generalized braid groups, are a family of infinite discrete groups defined by simple presentations. They are closely related with Coxeter groups. Examples are free groups, free abelian groups, braid groups, and right-angled Artin–Tits groups, among others.

In mathematics, a unipotent elementr of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In mathematics, a Gelfand pair is a pair (G,K) consisting of a group G and a subgroup K that satisfies a certain property on restricted representations. The theory of Gelfand pairs is closely related to the topic of spherical functions in the classical theory of special functions, and to the theory of Riemannian symmetric spaces in differential geometry. Broadly speaking, the theory exists to abstract from these theories their content in terms of harmonic analysis and representation theory.

In representation theory, a branch of mathematics, the Langlands dualLG of a reductive algebraic group G is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions. The Langlands dual was introduced by Langlands (1967) in a letter to A. Weil.

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it.

This is a glossary of properties and concepts in symplectic geometry in mathematics. The terms listed here cover the occurrences of symplectic geometry both in topology as well as in algebraic geometry. The glossary also includes notions from Hamiltonian geometry, Poisson geometry and geometric quantization.

Thomas Schick German mathematician

Thomas Schick is a German mathematician, specializing in algebraic topology and differential geometry.

In mathematics, especially in representation theory and algebraic geometry, the Beilinson–Bernstein localization theorem relates D-modules on flag varieties G/B to representations of the Lie algebra attached to a reductive group G. It was introduced by Beilinson & Bernstein (1981).

Anton Yurevich Alekseev is a Russian mathematician.

Ivan Vadimovich Loseu is a Belarusian-American mathematician, specializing in representation theory, symplectic geometry, algebraic geometry, and combinatorial algebra.

References

  1. Brion, Michel (2007). "The total coordinate ring of a wonderful variety". Journal of Algebra. 313 (1): 61–99. arXiv: math/0603157 . doi:10.1016/j.jalgebra.2006.12.022. S2CID   15154549.