In algebraic geometry, the theorem on formal functions states the following: [1]
The theorem is used to deduce some other important theorems: Stein factorization and a version of Zariski's main theorem that says that a proper birational morphism into a normal variety is an isomorphism. Some other corollaries (with the notations as above) are:
Corollary: [2] For any , topologically,
where the completion on the left is with respect to .
Corollary: [3] Let r be such that for all . Then
Corollay: [4] For each , there exists an open neighborhood U of s such that
Corollary: [5] If , then is connected for all .
The theorem also leads to the Grothendieck existence theorem, which gives an equivalence between the category of coherent sheaves on a scheme and the category of coherent sheaves on its formal completion (in particular, it yields algebralizability.)
Finally, it is possible to weaken the hypothesis in the theorem; cf. Illusie. According to Illusie (pg. 204), the proof given in EGA III is due to Serre. The original proof (due to Grothendieck) was never published.
Let the setting be as in the lede. In the proof one uses the following alternative definition of the canonical map.
Let be the canonical maps. Then we have the base change map of -modules
where is induced by . Since is coherent, we can identify with . Since is also coherent (as f is proper), doing the same identification, the above reads:
Using where and , one also obtains (after passing to limit):
where are as before. One can verify that the composition of the two maps is the same map in the lede. (cf. EGA III-1, section 4)
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative". The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space. In view of the correspondence between line bundles and divisors, there is an equivalent notion of an ample divisor.
In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.
In mathematics, the Grothendieck group construction constructs an abelian group from a commutative monoid M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.
Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover.
In mathematics the cotangent complex is roughly a universal linearization of a morphism of geometric or algebraic objects . They are defined in certain derived categories of sheaves for a space , or a morphism of spaces and control their deformation theory. Cotangent complexes were originally defined in special cases by a number of authors. Luc Illusie, Daniel Quillen, and M. André independently came up with a definition that works in all cases.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
This is a glossary of algebraic geometry.
In algebraic geometry, the Quot scheme is a scheme parametrizing locally free sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
In algebra, the local criterion for flatness gives conditions one can check to show flatness of a module.
In mathematics, the base change theorems relate the direct image and the pull-back of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:
The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and