In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG (i.e., a topological space all of whose homotopy groups are trivial) by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . [1] As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.
For a discrete group G, BG is, roughly speaking, a path-connected topological space X such that the fundamental group of X is isomorphic to G and the higher homotopy groups of X are trivial, that is, BG is an Eilenberg–MacLane space, or a K(G, 1).
An example of a classifying space for the infinite cyclic group G is the circle as X. When G is a discrete group, another way to specify the condition on X is that the universal cover Y of X is contractible. In that case the projection map
becomes a fiber bundle with structure group G, in fact a principal bundle for G. The interest in the classifying space concept really arises from the fact that in this case Y has a universal property with respect to principal G-bundles, in the homotopy category. This is actually more basic than the condition that the higher homotopy groups vanish: the fundamental idea is, given G, to find such a contractible space Y on which G acts freely . (The weak equivalence idea of homotopy theory relates the two versions.) In the case of the circle example, what is being said is that we remark that an infinite cyclic group C acts freely on the real line R, which is contractible. Taking X as the quotient space circle, we can regard the projection π from R = Y to X as a helix in geometrical terms, undergoing projection from three dimensions to the plane. What is being claimed is that π has a universal property amongst principal C-bundles; that any principal C-bundle in a definite way 'comes from' π.
A more formal statement takes into account that G may be a topological group (not simply a discrete group), and that group actions of G are taken to be continuous; in the absence of continuous actions the classifying space concept can be dealt with, in homotopy terms, via the Eilenberg–MacLane space construction. In homotopy theory the definition of a topological space BG, the classifying space for principal G-bundles, is given, together with the space EG which is the total space of the universal bundle over BG. That is, what is provided is in fact a continuous mapping
Assume that the homotopy category of CW complexes is the underlying category, from now on. The classifying property required of BG in fact relates to π. We must be able to say that given any principal G-bundle
over a space Z, there is a classifying map φ from Z to BG, such that is the pullback of π along φ. In less abstract terms, the construction of by 'twisting' should be reducible via φ to the twisting already expressed by the construction of π.
For this to be a useful concept, there evidently must be some reason to believe such spaces BG exist. The early work on classifying spaces introduced constructions (for example, the bar construction), that gave concrete descriptions of BG as a simplicial complex for an arbitrary discrete group. Such constructions make evident the connection with group cohomology.
Specifically, let EG be the weak simplicial complex whose n- simplices are the ordered (n+1)-tuples of elements of G. Such an n-simplex attaches to the (n−1) simplices in the same way a standard simplex attaches to its faces, where means this vertex is deleted. The complex EG is contractible. The group G acts on EG by left multiplication,
and only the identity e takes any simplex to itself. Thus the action of G on EG is a covering space action and the quotient map is the universal cover of the orbit space , and BG is a . [2]
In abstract terms (which are not those originally used around 1950 when the idea was first introduced) this is a question of whether a certain functor is representable: the contravariant functor from the homotopy category to the category of sets, defined by
The abstract conditions being known for this (Brown's representability theorem) ensure that the result, as an existence theorem, is affirmative and not too difficult.
This still leaves the question of doing effective calculations with BG; for example, the theory of characteristic classes is essentially the same as computing the cohomology groups of BG, at least within the restrictive terms of homotopy theory, for interesting groups G such as Lie groups (H. Cartan's theorem).[ clarification needed ] As was shown by the Bott periodicity theorem, the homotopy groups of BG are also of fundamental interest.
An example of a classifying space is that when G is cyclic of order two; then BG is real projective space of infinite dimension, corresponding to the observation that EG can be taken as the contractible space resulting from removing the origin in an infinite-dimensional Hilbert space, with G acting via v going to −v, and allowing for homotopy equivalence in choosing BG. This example shows that classifying spaces may be complicated.
In relation with differential geometry (Chern–Weil theory) and the theory of Grassmannians, a much more hands-on approach to the theory is possible for cases such as the unitary groups that are of greatest interest. The construction of the Thom complex MG showed that the spaces BG were also implicated in cobordism theory, so that they assumed a central place in geometric considerations coming out of algebraic topology. Since group cohomology can (in many cases) be defined by the use of classifying spaces, they can also be seen as foundational in much homological algebra.
Generalizations include those for classifying foliations, and the classifying toposes for logical theories of the predicate calculus in intuitionistic logic that take the place of a 'space of models'.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott, which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.
In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.
In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to n, where n is the rank of the vector bundle. If the Stiefel–Whitney class of index i is nonzero, then there cannot exist everywhere linearly independent sections of the vector bundle. A nonzero nth Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, , is zero.
In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute.
In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory
,
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.
In mathematics, the universal bundle in the theory of fiber bundles with structure group a given topological group G, is a specific bundle over a classifying space BG, such that every bundle with the given structure group G over M is a pullback by means of a continuous map M → BG.
In mathematics, quaternionic projective space is an extension of the ideas of real projective space and complex projective space, to the case where coordinates lie in the ring of quaternions Quaternionic projective space of dimension n is usually denoted by
In mathematics, the classifying space for the unitary group U(n) is a space BU(n) together with a universal bundle EU(n) such that any hermitian bundle on a paracompact space X is the pull-back of EU(n) by a map X → BU(n) unique up to homotopy.
In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :
In mathematics, the projective unitary groupPU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, finiteness properties of a group are a collection of properties that allow the use of various algebraic and topological tools, for example group cohomology, to study the group. It is mostly of interest for the study of infinite groups.
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).
In mathematics, the classifying spacefor the special orthogonal group is the base space of the universal principal bundle . This means that principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into . The isomorphism is given by pullback.