In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below.
More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
The category of topological spaces Top has topological spaces as objects and as morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other. There is a functor from Top to hTop that sends spaces to themselves and morphisms to their homotopy classes. A map f : X → Y is called a homotopy equivalence if it becomes an isomorphism in the naive homotopy category. [2]
Example: The circle S1, the plane R2 minus the origin, and the Möbius strip are all homotopy equivalent, although these topological spaces are not homeomorphic.
The notation [X,Y ] is often used for the hom-set from a space X to a space Y in the naive homotopy category (but it is also used for the related categories discussed below).
Quillen (1967) emphasized another category which further simplifies the category of topological spaces. Homotopy theorists have to work with both categories from time to time, but the consensus is that Quillen's version is more important, and so it is often called simply the "homotopy category". [3]
One first defines a weak homotopy equivalence: a continuous map is called a weak homotopy equivalence if it induces a bijection on sets of path components and a bijection on homotopy groups with arbitrary base points. Then the (true) homotopy category is defined by localizing the category of topological spaces with respect to the weak homotopy equivalences. That is, the objects are still the topological spaces, but an inverse morphism is added for each weak homotopy equivalence. This has the effect that a continuous map becomes an isomorphism in the homotopy category if and only if it is a weak homotopy equivalence. There are obvious functors from the category of topological spaces to the naive homotopy category (as defined above), and from there to the homotopy category.
Results of J.H.C. Whitehead, in particular Whitehead's theorem and the existence of CW approximations, [4] give a more explicit description of the homotopy category. Namely, the homotopy category is equivalent to the full subcategory of the naive homotopy category that consists of CW complexes. In this respect, the homotopy category strips away much of the complexity of the category of topological spaces.
Example: Let X be the set of natural numbers {0, 1, 2, ...} and let Y be the set {0} ∪ {1, 1/2, 1/3, ...}, both with the subspace topology from the real line. Define f : X → Y by mapping 0 to 0 and n to 1/n for n positive. Then f is continuous, and in fact a weak homotopy equivalence, but it is not a homotopy equivalence. Thus the naive homotopy category distinguishes spaces such as X and Y, whereas they become isomorphic in the homotopy category.
For topological spaces X and Y, the notation [X,Y ] may be used for the set of morphisms from X to Y in either the naive homotopy category or the true homotopy category, depending on the context.
One motivation for these categories is that many invariants of topological spaces are defined on the naive homotopy category or even on the true homotopy category. For example, for a weak homotopy equivalence of topological spaces f : X → Y, the associated homomorphism f* : Hi (X,Z) → Hi (Y,Z) of singular homology groups is an isomorphism for all natural numbers i. [5] It follows that, for each natural number i, singular homology Hi can be viewed as a functor from the homotopy category to the category of abelian groups. In particular, two homotopic maps from X to Y induce the same homomorphism on singular homology groups.
Singular cohomology has an even better property: it is a representable functor on the homotopy category. That is, for each abelian group A and natural number i, there is a CW complex K(A,i ) called an Eilenberg–MacLane space and a cohomology class u in H i(K(A,i ),A) such that the resulting function
(giving by pulling u back to X) is bijective for all topological spaces X. [6] Here [X,Y ] must be understood to mean the set of maps in the true homotopy category, if one wants this statement to hold for all topological spaces X. It holds in the naive homotopy category if X is a CW complex.
One useful variant is the homotopy category of pointed spaces. A pointed space means a pair (X,x) with X a topological space and x a point in X, called the base point. The category Top* of pointed spaces has objects the pointed spaces, and a morphism f : X → Y is a continuous map that takes the base point of X to the base point of Y. The naive homotopy category of pointed spaces has the same objects, and morphisms are homotopy classes of pointed maps (meaning that the base point remains fixed throughout the homotopy). Finally, the "true" homotopy category of pointed spaces is obtained from the category Top* by inverting the pointed maps that are weak homotopy equivalences.
For pointed spaces X and Y, [X,Y ] may denote the set of morphisms from X to Y in either version of the homotopy category of pointed spaces, depending on the context.
Several basic constructions in homotopy theory are naturally defined on the category of pointed spaces (or on the associated homotopy category), not on the category of spaces. For example, the suspension ΣX and the loop space ΩX are defined for a pointed space X and produce another pointed space. Also, the smash product X∧Y is an important functor of pointed spaces X and Y. For example, the suspension can be defined as
The suspension and loop space functors form an adjoint pair of functors, in the sense that there is a natural isomorphism
for all spaces X and Y.
While the objects of a homotopy category are sets (with additional structure), the morphisms are not actual functions between them, but rather classes of functions (in the naive homotopy category) or "zigzags" of functions (in the homotopy category). Indeed, Freyd showed that neither the naive homotopy category of pointed spaces nor the homotopy category of pointed spaces is a concrete category. That is, there is no faithful functor from these categories to the category of sets. [7]
There is a more general concept: the homotopy category of a model category. A model category is a category C with three distinguished types of morphisms called fibrations, cofibrations and weak equivalences, satisfying several axioms. The associated homotopy category is defined by localizing C with respect to the weak equivalences.
This construction, applied to the model category of topological spaces with its standard model structure (sometimes called the Quillen model structure), gives the homotopy category defined above. Many other model structures have been considered on the category of topological spaces, depending on how much one wants to simplify the category. For example, in the Hurewicz model structure on topological spaces, the associated homotopy category is the naive homotopy category defined above. [8]
The same homotopy category can arise from many different model categories. An important example is the standard model structure on simplicial sets: the associated homotopy category is equivalent to the homotopy category of topological spaces, even though simplicial sets are combinatorially defined objects that lack any topology. Some topologists prefer instead to work with compactly generated weak Hausdorff spaces; again, with the standard model structure, the associated homotopy category is equivalent to the homotopy category of all topological spaces. [9]
For a more algebraic example of a model category, let A be a Grothendieck abelian category, for example the category of modules over a ring or the category of sheaves of abelian groups on a topological space. Then there is a model structure on the category of chain complexes of objects in A, with the weak equivalences being the quasi-isomorphisms. [10] The resulting homotopy category is called the derived category D A.
Finally, the stable homotopy category is defined as the homotopy category associated to a model structure on the category of spectra. Various different categories of spectra have been considered, but all the accepted definitions yield the same homotopy category.
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.
In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.
In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.
In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.
In mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the homotopy category Hotc of pointed connected CW complexes, to the category of sets Set, to be a representable functor.
In mathematics, in particular homotopy theory, a continuous mapping between topological spaces
This is a glossary of properties and concepts in category theory in mathematics.
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.
In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.
In mathematics, particularly category theory, a 2-group is a groupoid with a way to multiply objects, making it resemble a group. They are part of a larger hierarchy of n-groups. They were introduced by Hoàng Xuân Sính in the late 1960s under the name gr-categories, and they are also known as categorical groups.
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.
In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences.
This is a glossary of properties and concepts in algebraic topology in mathematics.
In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids.
[...] people still obstinately persist, when calculating with fundamental groups, in fixing a single base point, instead of cleverly choosing a whole packet of points which is invariant under the symmetries of the situation, which thus get lost on the way. In certain situations it is much more elegant, even indispensable for understanding something, to work with fundamental groupoids with respect to a suitable packet of base points, [,,,]
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).