Allen Hatcher

Last updated
Allen Hatcher
Allen Hatcher.jpg
Allen Hatcher at Berkeley in 1980
Born
Allen Edward Hatcher

(1944-10-23) October 23, 1944 (age 79)
Nationality American
Alma mater Oberlin College
Stanford University
Scientific career
Fields Mathematics
Institutions Princeton University
University of California, Los Angeles
Cornell University
Thesis A K2 Obstruction for Pseudo-Isotopies (1971)
Doctoral advisor Hans Samelson
Doctoral students

Allen Edward Hatcher (born October 23, 1944) is an American topologist.

Contents

Biography

Hatcher was born in Indianapolis, Indiana. [1] After obtaining his B.S from Oberlin College in 1966, he went for his graduate studies to Stanford University, where he received his Ph.D. in 1971. [1] His thesis, A K2 Obstruction for Pseudo-Isotopies, was written under the supervision of Hans Samelson. [2] Afterwards, Hatcher went to Princeton University, where he was an NSF postdoc for a year, then a lecturer for another year, and then Assistant Professor from 1973 to 1979. He was also a member of the Institute for Advanced Study in 1975–76 and 1979–80. [1] Hatcher went on to become a professor at the University of California, Los Angeles in 1977. From 1983 he has been a professor at Cornell University; he is now a professor emeritus. [3]

In 1978 Hatcher was an invited speaker at the International Congresses of Mathematicians in Helsinki.

Mathematical contributions

He has worked in geometric topology, both in high dimensions, relating pseudoisotopy to algebraic K-theory, and in low dimensions: surfaces and 3-manifolds, such as proving the Smale conjecture for the 3-sphere.

3-manifolds

Perhaps among his most recognized results in 3-manifolds concern the classification of incompressible surfaces in certain 3-manifolds and their boundary slopes. William Floyd and Hatcher classified all the incompressible surfaces in punctured-torus bundles over the circle. William Thurston and Hatcher classified the incompressible surfaces in 2-bridge knot complements. As corollaries, this gave more examples of non-Haken, non-Seifert fibered, irreducible 3-manifolds and extended the techniques and line of investigation started in Thurston's Princeton lecture notes. Hatcher also showed that irreducible, boundary-irreducible 3-manifolds with toral boundary have at most "half" of all possible boundary slopes resulting from essential surfaces. In the case of one torus boundary, one can conclude that the number of slopes given by essential surfaces is finite.

Hatcher has made contributions to the so-called theory of essential laminations in 3-manifolds. He invented the notion of "end-incompressibility" and several of his students, such as Mark Brittenham, Charles Delman, and Rachel Roberts, have made important contributions to the theory.

Surfaces

Hatcher and Thurston exhibited an algorithm to produce a presentation of the mapping class group of a closed, orientable surface. Their work relied on the notion of a cut system and moves that relate any two systems.

Selected publications

Papers

Books

Related Research Articles

<span class="mw-page-title-main">William Thurston</span> American mathematician

William Paul Thurston was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.

In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries . In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem:

In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

In the mathematical field of geometric topology, a Heegaard splitting is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies.

In mathematics, an incompressible surface is a surface properly embedded in a 3-manifold, which, in intuitive terms, is a "nontrivial" surface that cannot be simplified. In non-mathematical terms, the surface of a suitcase is compressible, because we could cut the handle and shrink it into the surface. But a Conway sphere is incompressible, because there are essential parts of a knot or link both inside and out, so there is no way to move the entire knot or link to one side of the punctured sphere. The mathematical definition is as follows. There are two cases to consider. A sphere is incompressible if both inside and outside the sphere there are some obstructions that prevent the sphere from shrinking to a point and also prevent the sphere from expanding to encompass all of space. A surface other than a sphere is incompressible if any disk with its boundary on the surface spans a disk in the surface.

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries.

In mathematics, an atoroidal 3-manifold is one that does not contain an essential torus. There are two major variations in this terminology: an essential torus may be defined geometrically, as an embedded, non-boundary parallel, incompressible torus, or it may be defined algebraically, as a subgroup of its fundamental group that is not conjugate to a peripheral subgroup. The terminology is not standardized, and different authors require atoroidal 3-manifolds to satisfy certain additional restrictions. For instance:

In mathematics, Thurston's classification theorem characterizes homeomorphisms of a compact orientable surface. William Thurston's theorem completes the work initiated by Jakob Nielsen (1944).

In mathematics, a surface bundle over the circle is a fiber bundle with base space a circle, and with fiber space a surface. Therefore the total space has dimension 2 + 1 = 3. In general, fiber bundles over the circle are a special case of mapping tori.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Pair of pants (mathematics)</span> Three holed sphere

In mathematics, a pair of pants is a surface which is homeomorphic to the three-holed sphere. The name comes from considering one of the removed disks as the waist and the two others as the cuffs of a pair of pants.

In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is virtually Haken. That is, it has a finite cover that is a Haken manifold.

In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.

<span class="mw-page-title-main">William Floyd (mathematician)</span> American mathematician

William J. Floyd is an American mathematician specializing in topology. He is currently a professor at Virginia Polytechnic Institute and State University. Floyd received a PhD in mathematics from Princeton University 1978 under the direction of William Thurston.

<span class="mw-page-title-main">Yair Minsky</span>

Yair Nathan Minsky is an Israeli-American mathematician whose research concerns three-dimensional topology, differential geometry, group theory and holomorphic dynamics. He is a professor at Yale University. He is known for having proved Thurston's ending lamination conjecture and as a student of curve complex geometry.

References