Smale conjecture

Last updated

The Smale conjecture, named after Stephen Smale, is the statement that the diffeomorphism group of the 3-sphere has the homotopy-type of its isometry group, the orthogonal group O(4). It was proved in 1983 by Allen Hatcher. [1]

Contents

Equivalent statements

There are several equivalent statements of the Smale conjecture. One is that the component of the unknot in the space of smooth embeddings of the circle in 3-space has the homotopy-type of the round circles, equivalently, O(3). Another equivalent statement is that the group of diffeomorphisms of the 3-ball which restrict to the identity on the boundary is contractible.

Higher dimensions

Sometimes also the (false) statement that the inclusion is a weak equivalence for all is meant when referring to the Smale conjecture. For , this is easy, for , Smale proved it himself. [2]

For the conjecture is false due to the failure of to be contractible [3]

In late 2018, Tadayuki Watanabe released a preprint that proves the failure of Smale's conjecture in the remaining 4-dimensional case [4] relying on work around the Kontsevich integral, a generalization of the Gauss linking integral. As of 2021, the proof remains unpublished in a mathematical journal.

See also

Related Research Articles

Conjecture Proposition in mathematics that is unproven

In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's Last Theorem, have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.

Differential topology Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

Diffeomorphism Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.

In mathematical field of geometric topology, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.

Algebraic topology Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

Sphere eversion Topological operation of turning a sphere inside-out without creasing

In differential topology, sphere eversion is the process of turning a sphere inside out in a three-dimensional space. Remarkably, it is possible to smoothly and continuously turn a sphere inside out in this way without cutting or tearing it or creating any crease. This is surprising, both to non-mathematicians and to those who understand regular homotopy, and can be regarded as a veridical paradox; that is something that, while being true, on first glance seems false.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism if the inclusion maps

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

3-manifold Mathematical space

In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

Allen Hatcher American mathematician

Allen Edward Hatcher is an American topologist.

In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

In the mathematical field of topology, a regular homotopy refers to a special kind of homotopy between immersions of one manifold in another. The homotopy must be a 1-parameter family of immersions.

Immersion (mathematics) Differentiable function whose derivative is everywhere injective

In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential is everywhere injective. Explicitly, f : MN is an immersion if

In mathematics, specifically geometric topology, the Borel conjecture asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence should imply a stronger, topological notion.

In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure.

In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is

In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.

In mathematics, the surgery structure set is the basic object in the study of manifolds which are homotopy equivalent to a closed manifold X. It is a concept which helps to answer the question whether two homotopy equivalent manifolds are diffeomorphic. There are different versions of the structure set depending on the category and whether Whitehead torsion is taken into account or not.

In the mathematical field of topology, a sphere bundle is a fiber bundle in which the fibers are spheres of some dimension n. Similarly, in a disk bundle, the fibers are disks . From a topological perspective, there is no difference between sphere bundles and disk bundles: this is a consequence of the Alexander trick, which implies

References

  1. Hatcher, Allen E. (May 1983). "A Proof of the Smale Conjecture, Diff(S3) ≃ O(4)". The Annals of Mathematics. 117 (3): 553. doi:10.2307/2007035. JSTOR   2007035.
  2. Smale, Stephen (August 1959). "Diffeomorphisms of the 2-Sphere". Proceedings of the American Mathematical Society. 10 (4): 621–626. doi:10.2307/2033664. JSTOR   2033664.
  3. Allen, Hatcher (2012). "A 50 -Year View of Diffeomorphism Groups" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  4. Watanabe, Tadayuki (2019-08-19). "Some exotic nontrivial elements of the rational homotopy groups of Diff(S4)". arXiv: 1812.02448 [math.GT].