Complete set of invariants

Last updated

In mathematics, a complete set of invariants for a classification problem is a collection of maps

Contents

(where is the collection of objects being classified, up to some equivalence relation , and the are some sets), such that if and only if for all . In words, such that two objects are equivalent if and only if all invariants are equal. [1]

Symbolically, a complete set of invariants is a collection of maps such that

is injective.

As invariants are, by definition, equal on equivalent objects, equality of invariants is a necessary condition for equivalence; a complete set of invariants is a set such that equality of these is also sufficient for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).

Examples

Realizability of invariants

A complete set of invariants does not immediately yield a classification theorem: not all combinations of invariants may be realized. Symbolically, one must also determine the image of

References

  1. Faticoni, Theodore G. (2006), "Modules and point set topological spaces", Abelian groups, rings, modules, and homological algebra, Lect. Notes Pure Appl. Math., vol. 249, Chapman & Hall/CRC, Boca Raton, Florida, pp. 87–105, doi:10.1201/9781420010763.ch10 (inactive 11 July 2025), ISBN   978-1-58488-552-8, MR   2229105 {{citation}}: CS1 maint: DOI inactive as of July 2025 (link). See in particular p. 97.