In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.
A locally Noetherian scheme is a locally Noetherian formal scheme in the canonical way: the formal completion along itself. In other words, the category of locally Noetherian formal schemes contains all locally Noetherian schemes.
Formal schemes were motivated by and generalize Zariski's theory of formal holomorphic functions.
Algebraic geometry based on formal schemes is called formal algebraic geometry.
Formal schemes are usually defined only in the Noetherian case. While there have been several definitions of non-Noetherian formal schemes, these encounter technical problems. Consequently, we will only define locally noetherian formal schemes.
All rings will be assumed to be commutative and with unit. Let A be a (Noetherian) topological ring, that is, a ring A which is a topological space such that the operations of addition and multiplication are continuous. A is linearly topologized if zero has a base consisting of ideals. An ideal of definition for a linearly topologized ring is an open ideal such that for every open neighborhood V of 0, there exists a positive integer n such that . A linearly topologized ring is preadmissible if it admits an ideal of definition, and it is admissible if it is also complete. (In the terminology of Bourbaki, this is "complete and separated".)
Assume that A is admissible, and let be an ideal of definition. A prime ideal is open if and only if it contains . The set of open prime ideals of A, or equivalently the set of prime ideals of , is the underlying topological space of the formal spectrum of A, denoted Spf A. Spf A has a structure sheaf which is defined using the structure sheaf of the spectrum of a ring. Let be a neighborhood basis for zero consisting of ideals of definition. All the spectra of have the same underlying topological space but a different structure sheaf. The structure sheaf of Spf A is the projective limit .
It can be shown that if f∈A and Df is the set of all open prime ideals of A not containing f, then , where is the completion of the localization Af.
Finally, a locally noetherian formal scheme is a topologically ringed space (that is, a ringed space whose sheaf of rings is a sheaf of topological rings) such that each point of admits an open neighborhood isomorphic (as topologically ringed spaces) to the formal spectrum of a noetherian ring.
A morphism of locally noetherian formal schemes is a morphism of them as locally ringed spaces such that the induced map is a continuous homomorphism of topological rings for any affine open subset U.
f is said to be adic or is a -adic formal scheme if there exists an ideal of definition such that is an ideal of definition for . If f is adic, then this property holds for any ideal of definition.
For any ideal I and ring A we can define the I-adic topology on A, defined by its basis consisting of sets of the form a+In. This is preadmissible, and admissible if A is I-adically complete. In this case Spf A is the topological space Spec A/I with sheaf of rings instead of .
In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets.
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed ; it is however necessary that the space on/in which the object is defined is a topological space, in order that the word local has some meaning.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces.
In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.
In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.
In algebraic geometry, a noetherian scheme is a scheme that admits a finite covering by open affine subsets , noetherian rings. More generally, a scheme is locally noetherian if it is covered by spectra of noetherian rings. Thus, a scheme is noetherian if and only if it is locally noetherian and quasi-compact. As with noetherian rings, the concept is named after Emmy Noether.
In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing p-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of p-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness.
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
In algebraic geometry, the h topology is a Grothendieck topology introduced by Vladimir Voevodsky to study the homology of schemes. It combines several good properties possessed by its related "sub"topologies, such as the qfh and cdh topologies. It has subsequently been used by Beilinson to study p-adic Hodge theory, in Bhatt and Scholze's work on projectivity of the affine Grassmanian, Huber and Jörder's study of differential forms, etc.
This is a glossary of algebraic geometry.
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).
In algebraic geometry, a closed immersion of schemes is a regular embedding of codimension r if each point x in X has an open affine neighborhood U in Y such that the ideal of is generated by a regular sequence of length r. A regular embedding of codimension one is precisely an effective Cartier divisor.