Linear topology

Last updated

In algebra, a linear topology on a left -module is a topology on that is invariant under translations and admits a fundamental system of neighborhood of that consists of submodules of [1] If there is such a topology, is said to be linearly topologized. If is given a discrete topology, then becomes a topological -module with respect to a linear topology.

Contents

The notion is used more commonly in algebra than in analysis. Indeed, "[t]opological vector spaces with linear topology form a natural class of topological vector spaces over discrete fields, analogous to the class of locally convex topological vector spaces over the normed fields of real or complex numbers in functional analysis." [2]

The term "linear topology" goes back to Lefschetz' work. [1] [2]

Examples and non-examples

See also

Related Research Articles

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that

  1. Scalar multiplication in is continuous with respect to and the standard metric on or
  2. Addition in is continuous with respect to
  3. The metric is translation-invariant; that is, for all
  4. The metric space is complete.
<span class="mw-page-title-main">Quotient space (topology)</span> Topological space construction

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map. In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers, or the real numbers or the circle are locally compact abelian groups.

In mathematics, a topological abelian group, or TAG, is a topological group that is also an abelian group. That is, a TAG is both a group and a topological space, the group operations are continuous, and the group's binary operation is commutative.

In mathematics, a topological module is a module over a topological ring such that scalar multiplication and addition are continuous.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

In mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In mathematics, the category of topological vector spaces is the category whose objects are topological vector spaces and whose morphisms are continuous linear maps between them. This is a category because the composition of two continuous linear maps is again a continuous linear map. The category is often denoted TVect or TVS.

In mathematics, a topological semigroup is a semigroup that is simultaneously a topological space, and whose semigroup operation is continuous.

In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields.

In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. These kinds of fields were originally introduced in p-adic analysis since the fields are locally compact topological spaces constructed from the norm on . The topology is essential because it allows one to construct analogues of algebraic number fields in the p-adic context.

In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) X that has a partial order ≤ making it into an ordered vector space whose positive cone is a closed subset of X. Ordered TVSes have important applications in spectral theory.

References

  1. 1 2 Ch II, Definition 25.1. in Solomon Lefschetz, Algebraic Topology
  2. 1 2 Positselski, Leonid (2024). "Exact categories of topological vector spaces with linear topology". Moscow Math. Journal. 24 (2): 219–286.