Symmetric variety

Last updated

In algebraic geometry, a symmetric variety is an algebraic analogue of a symmetric space in differential geometry, given by a quotient G/H of a reductive algebraic group G by the subgroup H fixed by some involution of G.

See also

Related Research Articles

In mathematics, in general topology, compactification is the process or result of making a topological space into a compact space. A compact space is a space in which every open cover of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".

Calabi–Yau manifold Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

Algebraic group

In algebraic geometry, an algebraic group is a group that is an algebraic variety, such that the multiplication and inversion operations are given by regular maps on the variety.

Armand Borel Swiss mathematician

Armand Borel was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology, in the theory of Lie groups, and was one of the creators of the contemporary theory of linear algebraic groups.

In mathematics, a generalized flag variety is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complexflag manifold. Flag varieties are naturally projective varieties.

Point at infinity Concept in geometry

In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line.

Symmetric space A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In mathematics, the nilpotent cone of a finite-dimensional semisimple Lie algebra is the set of elements that act nilpotently in all representations of In other words,

Hermitian symmetric space Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, L2 cohomology is a cohomology theory for smooth non-compact manifolds M with Riemannian metric. It is defined in the same way as de Rham cohomology except that one uses square-integrable differential forms. The notion of square-integrability makes sense because the metric on M gives rise to a norm on differential forms and a volume form.

Vikraman Balaji is an Indian mathematician and currently a professor at Chennai Mathematical Institute. He completed his doctorate in Mathematics under the supervision of C. S. Seshadri. His primary area of research is in algebraic geometry, representation theory and differential geometry. Balaji was awarded the 2006 Shanti Swarup Bhatnagar Award in Mathematical Sciences along with Indranil Biswas "for his outstanding contributions to moduli problems of principal bundles over algebraic varieties, in particular on the Uhlenbeck-Yau compactification of the Moduli Spaces of µ-semistable bundles." He was elected Fellow of the Indian Academy of Sciences in 2007, Fellow of the Indian National Science Academy in 2015 and was awarded the J.C. Bose National Fellowship from 2009.

In the mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by Satake (1960, p.109) whose configurations classify simple Lie algebras over the field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real forms of the complex Lie algebra corresponding to the Dynkin diagram.

In algebraic geometry, a Humbert surface, studied by Humbert (1899), is a surface in the moduli space of principally polarized abelian surfaces consisting of the surfaces with a symmetric endomorphism of some fixed discriminant.

János Kollár is a Hungarian mathematician, specializing in algebraic geometry.

In mathematics, the Hitchin integrable system is an integrable system depending on the choice of a complex reductive group and a compact Riemann surface, introduced by Nigel Hitchin in 1987. It lies on the crossroads of algebraic geometry, the theory of Lie algebras and integrable system theory. It also plays an important role in geometric Langlands correspondence over the field of complex numbers; related to conformal field theory. A genus zero analogue of the Hitchin system arises as a certain limit of the Knizhnik–Zamolodchikov equations. Almost all integrable systems of classical mechanics can be obtained as particular cases of the Hitchin system.

In algebraic geometry, the smooth completion of a smooth affine algebraic curve X is a complete smooth algebraic curve which contains X as an open subset. Smooth completions exist and are unique over a perfect field.

This is a glossary of algebraic geometry.

In algebraic group theory, a wonderful compactification of a variety acted on by an algebraic group is a -equivariant compactification such that the closure of each orbit is smooth. Corrado de Concini and Claudio Procesi (1983) constructed a wonderful compactification of any symmetric variety given by a quotient of an algebraic group by the subgroup fixed by some involution of over the complex numbers, sometimes called the De Concini–Procesi compactification, and Elisabetta Strickland (1987) generalized this construction to arbitrary characteristic. In particular, by writing a group itself as a symmetric homogeneous space, , this gives a wonderful compactification of the group itself.

In algebraic geometry, a tropical compactification is a compactification of a subvariety of an algebraic torus, introduced by Jenia Tevelev. Given an algebraic torus and a connected closed subvariety of that torus, a compatification of the subvariety is defined as a closure of it in a toric variety of the original torus. The concept of a tropical compatification arises when trying to make compactifications as "nice" as possible. For a torus , a toric variety , the compatification is tropical when the map

Walter Lewis Baily, Jr.

Walter Lewis Baily, Jr. was an American mathematician.

References