Regular local ring

Last updated

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. [1] In symbols, let A be any Noetherian local ring with unique maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then Krull's principal ideal theorem implies that n ≥ dim A, and A is regular whenever n = dim A.

Contents

The concept is motivated by its geometric meaning. A point x on an algebraic variety X is nonsingular (a smooth point) if and only if the local ring of germs at x is regular. (See also: regular scheme.) Regular local rings are not related to von Neumann regular rings. [lower-alpha 1]

For Noetherian local rings, there is the following chain of inclusions:

Universally catenary rings Cohen–Macaulay rings Gorenstein rings complete intersection rings regular local rings

Characterizations

There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if is a Noetherian local ring with maximal ideal , then the following are equivalent definitions:

,
where the dimension is the Krull dimension. The minimal set of generators of are then called a regular system of parameters.
,
where the second dimension is the Krull dimension.
,
in which case, .

Multiplicity one criterion states: [2] if the completion of a Noetherian local ring A is unimixed (in the sense that there is no embedded prime divisor of the zero ideal and for each minimal prime p, ) and if the multiplicity of A is one, then A is regular. (The converse is always true: the multiplicity of a regular local ring is one.) This criterion corresponds to a geometric intuition in algebraic geometry that a local ring of an intersection is regular if and only if the intersection is a transversal intersection.

In the positive characteristic case, there is the following important result due to Kunz: A Noetherian local ring of positive characteristic p is regular if and only if the Frobenius morphism is flat and is reduced. No similar result is known in characteristic zero (it is unclear how one should replace the Frobenius morphism).

Examples

  1. Every field is a regular local ring. These have (Krull) dimension 0. In fact, the fields are exactly the regular local rings of dimension 0.
  2. Any discrete valuation ring is a regular local ring of dimension 1 and the regular local rings of dimension 1 are exactly the discrete valuation rings. Specifically, if k is a field and X is an indeterminate, then the ring of formal power series k[[X]] is a regular local ring having (Krull) dimension 1.
  3. If p is an ordinary prime number, the ring of p-adic integers is an example of a discrete valuation ring, and consequently a regular local ring, which does not contain a field.
  4. More generally, if k is a field and X1, X2, ..., Xd are indeterminates, then the ring of formal power series k[[X1, X2, ..., Xd]] is a regular local ring having (Krull) dimension d.
  5. If A is a regular local ring, then it follows that the formal power series ring A[[x]] is regular local.
  6. If Z is the ring of integers and X is an indeterminate, the ring Z[X](2, X) (i.e. the ring Z[X] localized in the prime ideal (2, X) ) is an example of a 2-dimensional regular local ring which does not contain a field.
  7. By the structure theorem of Irvin Cohen, a complete regular local ring of Krull dimension d that contains a field k is a power series ring in d variables over an extension field of k.

Non-examples

The ring is not a regular local ring since it is finite dimensional but does not have finite global dimension. For example, there is an infinite resolution

Using another one of the characterizations, has exactly one prime ideal , so the ring has Krull dimension , but is the zero ideal, so has dimension at least . (In fact it is equal to since is a basis.)

Basic properties

The Auslander–Buchsbaum theorem states that every regular local ring is a unique factorization domain.

Every localization, as well as the completion, of a regular local ring is regular.

If is a complete regular local ring that contains a field, then

,

where is the residue field, and , the Krull dimension.

See also: Serre's inequality on height and Serre's multiplicity conjectures.

Origin of basic notions

Regular local rings were originally defined by Wolfgang Krull in 1937, [3] but they first became prominent in the work of Oscar Zariski a few years later, [4] [5] who showed that geometrically, a regular local ring corresponds to a smooth point on an algebraic variety. Let Y be an algebraic variety contained in affine n-space over a perfect field, and suppose that Y is the vanishing locus of the polynomials f1,...,fm. Y is nonsingular at P if Y satisfies a Jacobian condition: If M = (∂fi/∂xj) is the matrix of partial derivatives of the defining equations of the variety, then the rank of the matrix found by evaluating M at P is n dim Y. Zariski proved that Y is nonsingular at P if and only if the local ring of Y at P is regular. (Zariski observed that this can fail over non-perfect fields.) This implies that smoothness is an intrinsic property of the variety, in other words it does not depend on where or how the variety is embedded in affine space. It also suggests that regular local rings should have good properties, but before the introduction of techniques from homological algebra very little was known in this direction. Once such techniques were introduced in the 1950s, Auslander and Buchsbaum proved that every regular local ring is a unique factorization domain.

Another property suggested by geometric intuition is that the localization of a regular local ring should again be regular. Again, this lay unsolved until the introduction of homological techniques. It was Jean-Pierre Serre who found a homological characterization of regular local rings: A local ring A is regular if and only if A has finite global dimension, i.e. if every A-module has a projective resolution of finite length. It is easy to show that the property of having finite global dimension is preserved under localization, and consequently that localizations of regular local rings at prime ideals are again regular.

This justifies the definition of regularity for non-local commutative rings given in the next section.

Regular ring

In commutative algebra, a regular ring is a commutative Noetherian ring, such that the localization at every prime ideal is a regular local ring: that is, every such localization has the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension.

The origin of the term regular ring lies in the fact that an affine variety is nonsingular (that is every point is regular) if and only if its ring of regular functions is regular.

For regular rings, Krull dimension agrees with global homological dimension.

Jean-Pierre Serre defined a regular ring as a commutative noetherian ring of finite global homological dimension. His definition is stronger than the definition above, which allows regular rings of infinite Krull dimension.

Examples of regular rings include fields (of dimension zero) and Dedekind domains. If A is regular then so is A[X], with dimension one greater than that of A.

In particular if k is a field, the ring of integers, or a principal ideal domain, then the polynomial ring is regular. In the case of a field, this is Hilbert's syzygy theorem.

Any localization of a regular ring is regular as well.

A regular ring is reduced [lower-alpha 2] but need not be an integral domain. For example, the product of two regular integral domains is regular, but not an integral domain. [6]

See also

Notes

  1. A local von Neumann regular ring is a division ring, so the two conditions are not very compatible.
  2. since a ring is reduced if and only if its localizations at prime ideals are.

Citations

  1. Atiyah & Macdonald 1969, p. 123, Theorem 11.22.
  2. Herrmann, M., S. Ikeda, and U. Orbanz: Equimultiplicity and Blowing Up. An Algebraic Study with an Appendix by B. Moonen. Springer Verlag, Berlin Heidelberg New-York, 1988. Theorem 6.8.
  3. Krull, Wolfgang (1937), "Beiträge zur Arithmetik kommutativer Integritätsbereiche III", Math. Z., 42: 745–766, doi:10.1007/BF01160110
  4. Zariski, Oscar (1940), "Algebraic varieties over ground fields of characteristic 0", Amer. J. Math., 62: 187–221, doi:10.2307/2371447, JSTOR   2371447
  5. Zariski, Oscar (1947), "The concept of a simple point of an abstract algebraic variety", Trans. Amer. Math. Soc., 62: 1–52, doi: 10.1090/s0002-9947-1947-0021694-1
  6. Is a regular ring a domain

Related Research Articles

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.

In mathematics, homological conjectures have been a focus of research activity in commutative algebra since the early 1960s. They concern a number of interrelated conjectures relating various homological properties of a commutative ring to its internal ring structure, particularly its Krull dimension and depth.

In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring R with finite injective dimension as an R-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In ring theory and homological algebra, the global dimension of a ring A denoted gl dim A, is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all A-modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings. By a theorem of Jean-Pierre Serre, global dimension can be used to characterize within the class of commutative Noetherian local rings those rings which are regular. Their global dimension coincides with the Krull dimension, whose definition is module-theoretic.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality

In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety. The need of a theory for such an apparently simple notion results from the existence of many definitions of dimension that are equivalent only in the most regular cases. A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:

This is a glossary of algebraic geometry.

In commutative algebra, the Krull–Akizuki theorem states the following: Let A be a one-dimensional reduced noetherian ring, K its total ring of fractions. Suppose L is a finite extension of K. If and B is reduced, then B is a one-dimensional noetherian ring. Furthermore, for every nonzero ideal of B, is finite over A.

This is a glossary of commutative algebra.

In algebra, specifically in the theory of commutative rings, Serre's inequality on height states: given a (Noetherian) regular ring A and a pair of prime ideals in it, for each prime ideal that is a minimal prime ideal over the sum , the following inequality on heights holds:

References