Perfect field

Last updated

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

Contents

Otherwise, k is called imperfect.

In particular, all fields of characteristic zero and all finite fields are perfect.

Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields (see third condition above).

Another important property of perfect fields is that they admit Witt vectors.

More generally, a ring of characteristic p (p a prime) is called perfect if the Frobenius endomorphism is an automorphism. [1] (When restricted to integral domains, this is equivalent to the above condition "every element of k is a pth power".)

Examples

Examples of perfect fields are:

Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic p > 0. Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field , since the Frobenius endomorphism sends and therefore is not surjective. This field embeds into the perfect field

called its perfection. Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example, [4] consider for an imperfect field of characteristic and a not a p-th power in k. Then in its algebraic closure , the following equality holds:

where bp = a and such b exists in this algebraic closure. Geometrically, this means that does not define an affine plane curve in .

Field extension over a perfect field

Any finitely generated field extension K over a perfect field k is separably generated, i.e. admits a separating transcendence base, that is, a transcendence base Γ such that K is separably algebraic over k(Γ). [5]

Perfect closure and perfection

One of the equivalent conditions says that, in characteristic p, a field adjoined with all pr-th roots (r ≥ 1) is perfect; it is called the perfect closure of k and usually denoted by .

The perfect closure can be used in a test for separability. More precisely, a commutative k-algebra A is separable if and only if is reduced. [6]

In terms of universal properties, the perfect closure of a ring A of characteristic p is a perfect ring Ap of characteristic p together with a ring homomorphism u : AAp such that for any other perfect ring B of characteristic p with a homomorphism v : AB there is a unique homomorphism f : ApB such that v factors through u (i.e. v = fu). The perfect closure always exists; the proof involves "adjoining p-th roots of elements of A", similar to the case of fields. [7]

The perfection of a ring A of characteristic p is the dual notion (though this term is sometimes used for the perfect closure). In other words, the perfection R(A) of A is a perfect ring of characteristic p together with a map θ : R(A) → A such that for any perfect ring B of characteristic p equipped with a map φ : BA, there is a unique map f : BR(A) such that φ factors through θ (i.e. φ = θf). The perfection of A may be constructed as follows. Consider the projective system

where the transition maps are the Frobenius endomorphism. The inverse limit of this system is R(A) and consists of sequences (x0, x1, ... ) of elements of A such that for all i. The map θ : R(A) → A sends (xi) to x0. [8]

See also

Notes

  1. Serre 1979, Section II.4
  2. Examples of fields of characteristic zero include the field of rational numbers, the field of real numbers or the field of complex numbers.
  3. Any finite field of order q may be denoted , where q = pk for some prime p and positive integer k.
  4. Milne, James. Elliptic Curves (PDF). p. 6.
  5. Matsumura, Theorem 26.2
  6. Cohn 2003 , Theorem 11.6.10
  7. Bourbaki 2003, Section V.5.1.4, page 111
  8. Brinon & Conrad 2009, section 4.2

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial.

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.

In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest positive number of copies of the ring's multiplicative identity (1) that will sum to the additive identity (0). If no such number exists, the ring is said to have characteristic zero.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In algebraic geometry, supersingular elliptic curves form a certain class of elliptic curves over a field of characteristic p > 0 with unusually large endomorphism rings. Elliptic curves over such fields which are not supersingular are called ordinary and these two classes of elliptic curves behave fundamentally differently in many aspects. Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In ring theory and Frobenius algebra extensions, areas of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf algebroids in place of the more classical Galois groups, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated endomorphism rings above the subring. A more recent definition of depth of any unital subring in any associative ring is proposed in a paper studying the depth of a subgroup of a finite group as group algebras over a commutative ring.

This is a glossary of commutative algebra.

References