In algebra, a field k is perfect if any one of the following equivalent conditions holds:
Otherwise, k is called imperfect.
In particular, all fields of characteristic zero and all finite fields are perfect.
Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields (see third condition above).
Another important property of perfect fields is that they admit Witt vectors.
More generally, a ring of characteristic p (p a prime) is called perfect if the Frobenius endomorphism is an automorphism. [1] (When restricted to integral domains, this is equivalent to the above condition "every element of k is a pth power".)
Examples of perfect fields are:
Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic p > 0. Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field , since the Frobenius endomorphism sends and therefore is not surjective. This field embeds into the perfect field
called its perfection. Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example, [4] consider for an imperfect field of characteristic and a not a p-th power in k. Then in its algebraic closure , the following equality holds:
where bp = a and such b exists in this algebraic closure. Geometrically, this means that does not define an affine plane curve in .
Any finitely generated field extension K over a perfect field k is separably generated, i.e. admits a separating transcendence base, that is, a transcendence base Γ such that K is separably algebraic over k(Γ). [5]
One of the equivalent conditions says that, in characteristic p, a field adjoined with all pr-th roots (r ≥ 1) is perfect; it is called the perfect closure of k and usually denoted by .
The perfect closure can be used in a test for separability. More precisely, a commutative k-algebra A is separable if and only if is reduced. [6]
In terms of universal properties, the perfect closure of a ring A of characteristic p is a perfect ring Ap of characteristic p together with a ring homomorphism u : A → Ap such that for any other perfect ring B of characteristic p with a homomorphism v : A → B there is a unique homomorphism f : Ap → B such that v factors through u (i.e. v = fu). The perfect closure always exists; the proof involves "adjoining p-th roots of elements of A", similar to the case of fields. [7]
The perfection of a ring A of characteristic p is the dual notion (though this term is sometimes used for the perfect closure). In other words, the perfection R(A) of A is a perfect ring of characteristic p together with a map θ : R(A) → A such that for any perfect ring B of characteristic p equipped with a map φ : B → A, there is a unique map f : B → R(A) such that φ factors through θ (i.e. φ = θf). The perfection of A may be constructed as follows. Consider the projective system
where the transition maps are the Frobenius endomorphism. The inverse limit of this system is R(A) and consists of sequences (x0, x1, ... ) of elements of A such that for all i. The map θ : R(A) → A sends (xi) to x0. [8]
In mathematics, a field F is algebraically closed if every non-constant polynomial in F[x] has a root in F.
In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.
In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.
In mathematics, particularly in algebra, a field extension is a pair of fields , such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, and are both transcendental extensions of
Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.
In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial.
In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.
In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest positive number of copies of the ring's multiplicative identity (1) that will sum to the additive identity (0). If no such number exists, the ring is said to have characteristic zero.
In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.
In algebraic geometry, supersingular elliptic curves form a certain class of elliptic curves over a field of characteristic p > 0 with unusually large endomorphism rings. Elliptic curves over such fields which are not supersingular are called ordinary and these two classes of elliptic curves behave fundamentally differently in many aspects. Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.
In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified.
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.
In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent. The two parts are polynomials in the operator, which makes them behave nicely in algebraic manipulations.
In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.
In ring theory and Frobenius algebra extensions, areas of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf algebroids in place of the more classical Galois groups, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated endomorphism rings above the subring. A more recent definition of depth of any unital subring in any associative ring is proposed in a paper studying the depth of a subgroup of a finite group as group algebras over a commutative ring.
This is a glossary of commutative algebra.