Surveyor 7

Last updated
Surveyor 7
M175355093L thumb 4x.png
Surveyor 7, sitting on the ejecta blanket of Tycho Crater (image width is 500 m). Inset is zoomed 4x [NASA/GSFC/Arizona State University].
Mission typeLunar lander
Operator NASA
COSPAR ID 1968-001A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 03091
Mission duration45 days (launch to last contact)
Spacecraft properties
Manufacturer Hughes Aircraft
Launch mass1,040.1 kilograms (2,293 lb) [1]
Landing mass305.7 kilograms (674 lb) after landing
Start of mission
Launch dateJanuary 7, 1968, 06:30:00 (1968-01-07UTC06:30Z) UTC [1]
Rocket Atlas SLV-3C Centaur-D AC-15
Launch site Cape Canaveral LC-36A
End of mission
Last contactFebruary 21, 1968 (1968-02-22)
Lunar lander
Landing dateJanuary 10, 1968, 01:05:36 UTC
Landing site 41°01′S11°25′W / 41.01°S 11.41°W / -41.01; -11.41
  Surveyor 6
None 
 

Surveyor 7 was sent to the Moon in 1968 on a scientific and photographic mission as the seventh and last lunar lander of the American uncrewed Surveyor program. With two previous unsuccessful missions in the Surveyor series, and with Surveyor 7's landing success, Surveyor 7 became the fifth and final spacecraft in the series to achieve a lunar soft landing. A total of 21,091 pictures were transmitted from Surveyor 7 back to Earth.

Contents

The objectives for this mission were to perform a lunar soft landing (in an area well removed from the maria to provide a type of terrain photography and lunar sample significantly different from those of other Surveyor missions); obtain postlanding TV pictures; determine the relative abundances of chemical elements; manipulate the lunar material; obtain touchdown dynamics data; and obtain thermal and radar reflectivity data.

Surveyor model on Earth. Surveyor NASA lunar lander.jpg
Surveyor model on Earth.

This spacecraft was similar in design to the previous Surveyors, but it carried more scientific equipment including a television camera with polarizing filters, a surface sampler, bar magnets on two footpads, two horseshoe magnets on the surface scoop, and auxiliary mirrors. Of the auxiliary mirrors, three were used to observe areas below the spacecraft, one to provide stereoscopic views of the surface sampler area, and seven to show lunar material deposited on the spacecraft. The spacecraft landed on the lunar surface on January 10, 1968, on the outer rim of the crater Tycho.

Operations of the spacecraft began shortly after the soft landing and were terminated on January 26, 1968, 80 hours after sunset. On January 20, while the craft was still in daylight, the TV camera clearly saw two laser beams aimed at it from the night side of the crescent Earth, one from Kitt Peak National Observatory, Tucson, Arizona, and the other at Table Mountain at Wrightwood, California. [2] [3]

Operations on the second lunar day occurred from February 12 to 21, 1968. The mission objectives were fully satisfied by the spacecraft operations. Battery damage was suffered during the first lunar night and transmission contact was subsequently sporadic. Contact with Surveyor 7 was lost on February 21, 1968. [4]

NASA and Bellcom mission planners considered the Surveyor 7 site as a potential target for a crewed late Apollo mission, perhaps Apollo 20, though a combination of operational constraints, including the high latitude of the site and its rough terrain, and the early cancellation of post-Apollo 17 lunar missions, contributed to the site's elimination. [5] [6]

Surveyor 7 was the first probe to detect the faint glow on the lunar horizon after dark that is now thought to be light reflected from electrostatically levitated Moon dust, a phenomenon known as Lunar horizon glow [7]

Science instruments

Television

Surveyor 7 observes levitating dust 20120927 surveyor7-levitating-dust.jpg
Surveyor 7 observes levitating dust

The TV camera consisted of a vidicon tube, 25 and 100 mm focal length lenses, shutters, polarizing filters, and iris mounted nearly vertically and surmounted by a mirror that could be adjusted by stepping motors to move in both azimuth and elevations. The polarizing filters served as analyzers for the detection of measurements of the linearly polarized component of light scattered from the lunar surface. The frame by frame coverage of the lunar surface provided a 360 deg azimuth view and an elevation view from approximately +90 deg above the plane normal to the camera A axis to -60 deg below this same plane.[ citation needed ]

Both 600 line and 200 line modes of operation were used. The 200 line mode transmitted over an omnidirectional antenna and scanned one frame each 61.8 seconds. [8] A complete video transmission of each 200 line picture required 20 seconds and utilized a bandwidth of 1.2 kHz. [8] Most transmissions consisted of 600 line pictures, which were telemetered by a directional antenna. The frames were scanned each 3.6 seconds. [8] Each frame required nominally one second to be read from the vidicon and utilized a 220 kHz bandwidth for transmission. [8] The dynamic range and sensitivity of this camera were slightly less than those on the Surveyor 6 camera. Resolution and quality were excellent. The television images were displayed on a slow scan monitor coated with a long persistency phosphor. The persistency was selected to optimally match the nominal maximum frame rate. One frame of TV identification was received for each incoming TV frame and was displayed in real time at a rate compatible with that of the incoming image. These data were recorded on a video magnetic tape recorder and on 70 mm film.

Surveyor 7 camera characteristics on 600-line mode were: [8]

The camera transmitted 20,961 pictures during the first lunar day, January 10 to January 22, 1968. From February 12 to February 14, the camera was operated in the 200 line mode because of loss of horizontal sweep in the 600 line mode. During the second lunar day, 45 pictures were transmitted before loss of power caused suspension of camera operation.

On 20 January 1968, it successfully detected two argon lasers from Kitt Peak National Observatory in Arizona and Table Mountain Observatory in Wrightwood, California. [9] This was one of the early tests of laser communication in space.

Alpha-Scattering Surface Analyzer

The alpha-scattering surface analyzer was designed to measure directly the abundances of the major elements of the lunar surface. The instrumentation consisted of an alpha source (curium 242) collimated to irradiate a 10 mm diameter opening in the bottom of the instrument where the sample was located and two parallel but independent charged particle detector systems. One system, containing two sensors, detected the energy spectra of the alpha particles scattered from the lunar surface, and the other, containing four sensors, detected energy spectra of the protons produced via reaction (alpha and proton) in the surface material. Each detector assembly was connected to a pulse height analyzer. A digital electronics package, located in a compartment on the spacecraft, continuously telemetered signals to earth whenever the experiment was operating. The spectra contained quantitative information on all major elements in the samples except for hydrogen, helium, and lithium. The experiment provided 46 hours of data accumulated from three lunar surface sample measurements. These measurements were of a portion of undisturbed local lunar surface, a lunar rock, and an extensively trenched area of the lunar surface. Data were obtained during the first and second lunar days, January 12 to 23, 1968, and February 13 to 21, 1968.[ citation needed ]

The alpha backscattering instrument failed to deploy properly. Mission controllers successfully used the surface soil sampler claw to push the alpha backscattering instrument into the proper position to conduct its experiments.[ citation needed ]

Soil Mechanics Surface Sampler

The soil mechanics surface sampler was designed to pick up, dig, scrape, and trench the lunar surface, and transport lunar surface material while being photographed so that the properties of the lunar surface could be determined. The sampler consisted primarily of a scoop with a container, a sharpened blade, and an electric motor to open and close the container. The flat foot of the scoop incorporated two embedded rectangular horseshoe magnets. The scoop was mounted on a pantograph arm that could be extended about 1.5 m or retracted close to the spacecraft motor drive. The arm could also be moved from an azimuth of +40° to -72° or be elevated 130 mm by motor drives. It could also be dropped onto the lunar surface under force provided by gravity and a spring. The scoop was mounted below the television camera in a position that allowed it to reach the alpha-scattering instrument in its deployed position and redeploy it to another selected location. The instrument performed 16 bearing tests, seven trenching tests, and two impact tests. It also freed the alpha-scattering instrument when it failed to deploy on the lunar surface, shaded this instrument, and moved this instrument for evaluation of other samples. Performance was flawless during 36 hours of operation between January 11 and January 23, 1968. The instrument responded to commands on February 14, 1968, which verified that it had survived the lunar night. The power system, however, was unable to support any operations.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Apollo 12</span> Second crewed Moon landing

Apollo 12 was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center, Florida. Commander Charles "Pete" Conrad and Lunar Module Pilot Alan L. Bean performed just over one day and seven hours of lunar surface activity while Command Module Pilot Richard F. Gordon remained in lunar orbit.

<span class="mw-page-title-main">Lunokhod programme</span> Soviet Moon rover program

Lunokhod was a series of Soviet robotic lunar rovers designed to land on the Moon between 1969 and 1977. Lunokhod 1 was the first roving remote-controlled robot to land on an extraterrestrial body.

<span class="mw-page-title-main">Surveyor program</span> 1960s NASA program to soft-land robotic probes on the Moon

The Surveyor program was a NASA program that, from June 1966 through January 1968, sent seven robotic spacecraft to the surface of the Moon. Its primary goal was to demonstrate the feasibility of soft landings on the Moon. The Surveyor craft were the first American spacecraft to achieve soft landing on an extraterrestrial body. The missions called for the craft to travel directly to the Moon on an impact trajectory, a journey that lasted 63 to 65 hours, and ended with a deceleration of just over three minutes to a soft landing.

<span class="mw-page-title-main">Surveyor 3</span> American lunar lander

Surveyor 3 is the third lander of the American uncrewed Surveyor program sent to explore the surface of the Moon in 1967 and the second to successfully land. It was the first mission to carry a surface-soil sampling-scoop.

<span class="mw-page-title-main">Surveyor 1</span> Lunar lander spacecraft

Surveyor 1 was the first lunar soft-lander in the uncrewed Surveyor program of the National Aeronautics and Space Administration. This lunar soft-lander gathered data about the lunar surface that would be needed for the crewed Apollo Moon landings that began in 1969. The successful soft landing of Surveyor 1 on the Ocean of Storms was the first by an American space probe on any extraterrestrial body, occurring on the first attempt and just four months after the first soft Moon landing by the Soviet Union's Luna 9 probe.

<span class="mw-page-title-main">Ranger program</span> American uncrewed lunar space missions in the 1960s

The Ranger program was a series of uncrewed space missions by the United States in the 1960s whose objective was to obtain the first close-up images of the surface of the Moon. The Ranger spacecraft were designed to take images of the lunar surface, transmitting those images to Earth until the spacecraft were destroyed upon impact. A series of mishaps, however, led to the failure of the first six flights. At one point, the program was called "shoot and hope". Congress launched an investigation into "problems of management" at NASA Headquarters and Jet Propulsion Laboratory. After two reorganizations of the agencies, Ranger 7 successfully returned images in July 1964, followed by two more successful missions.

<span class="mw-page-title-main">Lunar Orbiter program</span> Series of five uncrewed lunar orbiter missions

The Lunar Orbiter program was a series of five uncrewed lunar orbiter missions launched by the United States from 1966 through 1967. Intended to help select Apollo landing sites by mapping the Moon's surface, they provided the first photographs from lunar orbit and photographed both the Moon and Earth.

<span class="mw-page-title-main">Surveyor 4</span> Space probe

Surveyor 4 is the fourth lunar lander in the American uncrewed Surveyor program sent to explore the surface of the Moon. This spacecraft crashed after an otherwise flawless mission; telemetry contact was lost 2.5 minutes before touchdown. The planned landing target was Sinus Medii at 0.4° north latitude and 1.33° west longitude.

<span class="mw-page-title-main">Surveyor 5</span>

Surveyor 5 is the fifth lunar lander of the American uncrewed Surveyor program sent to explore the surface of the Moon. Surveyor 5 landed on Mare Tranquillitatis in 1967. A total of 19,118 images were transmitted to Earth.

<span class="mw-page-title-main">Surveyor 6</span>

Surveyor 6 is the sixth lunar lander of the American uncrewed Surveyor program that reached the surface of the Moon. Surveyor 6 landed on the Sinus Medii. A total of 30,027 images were transmitted to Earth.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Ranger 6</span> United States lunar space probe

Ranger 6 was a lunar probe in the NASA Ranger program, a series of robotic spacecraft of the early and mid-1960s to obtain close-up images of the Moon's surface. It was launched on January 30, 1964 and was designed to transmit high-resolution photographs of the lunar terrain during the final minutes of flight until impacting the surface. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. No other experiments were carried on the spacecraft. Due to a failure of the camera system, no images were returned.

<span class="mw-page-title-main">Ranger 8</span> NASA spacecraft to explore the Moon, 1965

Ranger 8 was a lunar probe in the Ranger program, a robotic spacecraft series launched by NASA in the early-to-mid-1960s to obtain the first close-up images of the Moon's surface. These pictures helped select landing sites for Apollo missions and were used for scientific study. During its 1965 mission, Ranger 8 transmitted 7,137 lunar surface photographs before it crashed into the Moon as planned. This was the second successful mission in the Ranger series, following Ranger 7. Ranger 8's design and purpose were very similar to those of Ranger 7. It had six television vidicon cameras: two full-scan and four partial-scan. Its sole purpose was to document the Moon's surface.

<span class="mw-page-title-main">Lunar Orbiter 5</span> United States lunar space probe

Lunar Orbiter 5, the last of the "Lunar Orbiter series", was designed to take additional Apollo and Surveyor landing site photography and to take broad survey images of unphotographed parts of the Moon's far side. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data and was used to evaluate the Manned Space Flight Network tracking stations and Apollo Orbit Determination Program.

<span class="mw-page-title-main">Moon landing</span> Arrival of a spacecraft on the Moons surface

A Moon landing or lunar landing is the arrival of a spacecraft on the surface of the Moon, including both crewed and robotic missions. The first human-made object to touch the Moon was Luna 2 in 1959.

<span class="mw-page-title-main">Solo operations of Apollo 15</span> Proceedings of Alfred Wordens time in lunar orbit as part of the NASA mission

During the 1971 Apollo 15 mission to the Moon, and its three days of exploration on the lunar surface by David Scott and James Irwin, Command Module Pilot (CMP) Al Worden had a busy schedule of observations. Apollo 15 was the first mission to carry the Scientific Instrument Module (SIM) bay, which contained a panoramic camera, gamma ray spectrometer, mapping camera, laser altimeter and mass spectrometer. Worden had to operate the shutter and lenses on the cameras and turn on and off the various instruments. During the coast back to Earth, he would perform an EVA to retrieve film cassettes from the cameras.

<span class="mw-page-title-main">Lunar lander</span> Spacecraft intended to land on the surface of the Moon

A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2024, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.

<span class="mw-page-title-main">Third-party evidence for Apollo Moon landings</span> Independent confirmations of Apollo Moon landings

Third-party evidence for Apollo Moon landings is evidence, or analysis of evidence, about the Moon landings that does not come from either NASA or the U.S. government, or the Apollo Moon landing hoax theorists. This evidence provides independent confirmation of NASA's account of the six Apollo program Moon missions flown between 1969 and 1972.

<span class="mw-page-title-main">Lunar Reconnaissance Orbiter</span> NASA robotic spacecraft orbiting the Moon

The Lunar Reconnaissance Orbiter (LRO) is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. Data collected by LRO have been described as essential for planning NASA's future human and robotic missions to the Moon. Its detailed mapping program is identifying safe landing sites, locating potential resources on the Moon, characterizing the radiation environment, and demonstrating new technologies.

References

  1. 1 2 "Surveyor 7". NASA's Solar System Exploration website. Retrieved December 2, 2022.
  2. "Boeing: Satellite Development Center - Scientific Exploration - Surveyor". Archived from the original on 2010-02-07. Retrieved 2010-03-31. Notes on the laser experiment.
  3. photo of the beam from the 2-watt green argon Hughes laser at Table Mountain
  4. "Surveyor VII". University of Arizona Lunar and Planetary Laboratory. 28 November 2017. Retrieved 11 April 2021.
  5. Portree, David S. F. (23 March 2012). "Apollo Mission to Tycho (1969)". Wired. Retrieved 11 April 2021.
  6. Wade, Mark. "Apollo 20". Astronautix. Archived from the original on October 13, 2016. Retrieved 11 April 2021.
  7. Strange Things Happen at Full Moon | LiveScience
  8. 1 2 3 4 5 NASA SP-184 - SURVEYOR Program Results (PDF). NASA. 1969. pp. 22, 23.
  9. "Argon Laser as Seen from the Moon".