Project Prometheus

Last updated
Nuclear reactors could be used to power ion engines such as this one used on Deep Space 1. Ion Engine Test Firing - GPN-2000-000482.jpg
Nuclear reactors could be used to power ion engines such as this one used on Deep Space 1.

Project Prometheus (also known as Project Promethian) was established in 2003 by NASA to develop nuclear-powered systems for long-duration space missions. [1] This was NASA's first serious foray into nuclear spacecraft propulsion since the cancellation of the SNTP project in 1995. The project was planned to design, develop, and fly multiple deep space missions to the outer planets.

Contents

The project was cancelled in 2005, due to other demands on NASA's budget. [2] [1] Its budget shrank from $252.6 million in 2005 [3] to only $100 million in 2006, $90 million of which was for closeout costs on cancelled contracts.

Namesake

Originally named the "Nuclear Systems Initiative", Project Prometheus was named for the wisest of the Titans in Greek mythology who gave the gift of fire to humanity. NASA said the name Prometheus indicates its hopes of establishing a new tool for understanding nature and expanding capabilities for the exploration of the Solar System.

Motivations

Due to their distance from the Sun, spacecraft exploring the outer planets are severely limited in that they cannot use solar power as a source of electrical energy for onboard instrumentation or for ion propulsion systems. Previous missions to the outer planets such as Voyager and Galileo probe have relied on radioisotope thermoelectric generators (RTGs) as their primary power source. Unlike RTGs which rely on heat produced by the natural decay of radioactive isotopes, Project Prometheus called for the use of a small nuclear reactor as the primary power source.

The primary advantages of this would have been:

Missions

Prometheus I (Jupiter Icy Moons Orbiter) Prometheus1.jpg
Prometheus I (Jupiter Icy Moons Orbiter)

Missions planned to involve Prometheus Nuclear Systems and Technology included:

Technology

Project Prometheus was focused on Nuclear electric propulsion: [4] :1

Development of spacecraft powered by nuclear reactors to generate electricity. Brayton cycle turboalternators were selected for power generation. [4] :118 This electricity would then be used to run ion engines. It did not study nor pursue nuclear thermal propulsion (e.g. NERVA).

NASA's Prometheus reactor was to be built by the U.S. Department of Energy's Office of Naval Reactors in Washington, D.C., per an agreement signed in August 2004. [5] The reactor would have generated 200,000 watts of power for the propulsion and instruments of a spacecraft. [1]

Collaboration

The project was managed by Jet Propulsion Laboratory (JPL). [5] Spacecraft design contracts were awarded to Boeing, Lockheed-Martin, and Northrop Grumman. [4] :25

Project Prometheus would have had substantial involvement of the U.S. Department of Energy (DOE).

Naval Reactors, which oversees the nuclear reactor program of the U.S. Navy, was to participate in the design and construction of the reactors for the Jupiter Icy Moons Orbiter (JIMO).

In addition to Knolls Atomic Power Laboratory in Schenectady, New York, Bettis Laboratory in Pittsburgh, Pennsylvania, and other supporting Department of Energy national laboratories participated in the Prometheus cooperation. [5]

In September 2004, JPL chose Northrop Grumman Space Technology to co-design the projected Prometheus spacecraft. The awarded contract was worth around $400 million. [5]

See also

Notes

  1. 1 2 3 Brown, David W. "NASAs Nuclear Option May Be Crucial for Getting Humans to Mars". Scientific American. Retrieved 2023-01-04.
  2. The National Academy of Sciences (2009). Launching Science: Science Opportunities Provided by NASA's Constellation System. Washington, DC: The National Academies Press. p. 18. ISBN   978-0-309-11644-2.
  3. Prometheus Project Final Report (Report). NASA/JPL. October 1, 2005. p. 191.
  4. 1 2 3 "982-R120461, PROMETHEUS PROJECT FINAL REPORT". Oct 2005. Abstract, and link to pdf, of 227 page final report.
  5. 1 2 3 4 David, Leonard (2005-04-06). "NASA's Prometheus: Fire, Smoke And Mirrors". Space.com. Retrieved 2023-01-04.

Related Research Articles

<span class="mw-page-title-main">Nuclear thermal rocket</span> Rocket engine that uses a nuclear reactor to generate thrust

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction, often nuclear fission, replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

A nuclear electric rocket is a type of spacecraft propulsion system where thermal energy from a nuclear reactor is converted to electrical energy, which is used to drive an ion thruster or other electrical spacecraft propulsion technology. The nuclear electric rocket terminology is slightly inconsistent, as technically the "rocket" part of the propulsion system is non-nuclear and could also be driven by solar panels. This is in contrast with a nuclear thermal rocket, which directly uses reactor heat to add energy to a working fluid, which is then expelled out of a rocket nozzle.

<span class="mw-page-title-main">Nuclear pulse propulsion</span> Using chains of atomic bombs to push a spacecraft

Nuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot.

<span class="mw-page-title-main">Radioisotope thermoelectric generator</span> Type of electric generator

A radioisotope thermoelectric generator, sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts.

<i>Jupiter Icy Moons Orbiter</i> Canceled NASA orbiter mission to Jupiters icy moons

The Jupiter Icy Moons Orbiter (JIMO) was a proposed NASA spacecraft designed to explore the icy moons of Jupiter. The main target was Europa, where an ocean of liquid water may harbor alien life. Ganymede and Callisto, which are now thought to have liquid, salty oceans beneath their icy surfaces, were also targets of interest for the probe.

<span class="mw-page-title-main">Nuclear propulsion</span> Nuclear power to propel a vehicle

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. The idea of using nuclear material for propulsion dates back to the beginning of the 20th century. In 1903 it was hypothesized that radioactive material, radium, might be a suitable fuel for engines to propel cars, planes, and boats. H. G. Wells picked up this idea in his 1914 fiction work The World Set Free.

<span class="mw-page-title-main">NERVA</span> US Nuclear thermal rocket engine project 1956-1973

The Nuclear Engine for Rocket Vehicle Application (NERVA) was a nuclear thermal rocket engine development program that ran for roughly two decades. Its principal objective was to "establish a technology base for nuclear rocket engine systems to be utilized in the design and development of propulsion systems for space mission application". NERVA was a joint effort of the Atomic Energy Commission (AEC) and the National Aeronautics and Space Administration (NASA), and was managed by the Space Nuclear Propulsion Office (SNPO) until the program ended in January 1973. SNPO was led by NASA's Harold Finger and AEC's Milton Klein.

A radioisotope rocket or radioisotope thermal rocket is a type of thermal rocket engine that uses the heat generated by the decay of radioactive elements to heat a working fluid, which is then exhausted through a rocket nozzle to produce thrust. They are similar in nature to nuclear thermal rockets such as NERVA, but are considerably simpler and often have no moving parts. Alternatively, radioisotopes may be used in a radioisotope electric rocket, in which energy from nuclear decay is used to generate the electricity used to power an electric propulsion system.

<span class="mw-page-title-main">Interstellar probe</span> Space probe that can travel out of the Solar System

An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.

<span class="mw-page-title-main">SNAP-10A</span> Experimental nuclear-powered US Air Force satellite

SNAP-10A was a US experimental nuclear powered satellite launched into space in 1965 as part of the SNAPSHOT program. The test marked both the world's first operation of a nuclear reactor in orbit, and the first operation of an ion thruster system in orbit. It is the only fission reactor power system launched into space by the United States. The reactor stopped working after just 43 days due to a non-nuclear electrical component failure. The Systems Nuclear Auxiliary Power Program reactor was specifically developed for satellite use in the 1950s and early 1960s under the supervision of the U.S. Atomic Energy Commission.

The Westinghouse Astronuclear Laboratory (WANL) was a division of Westinghouse Electric Corporation. Established in 1959 to develop nuclear space propulsion technologies for the government, the lab was located, for most of its history, in the paradoxically small town of "Large" along Pa. Rte 51, about 13 miles (21 km) south of Pittsburgh in Allegheny County, Pennsylvania, USA. The site is not far from the Bettis Atomic Power Laboratory in West Mifflin, which Westinghouse operated during the same time and later.

The Systems Nuclear Auxiliary POWER (SNAP) program was a program of experimental radioisotope thermoelectric generators (RTGs) and space nuclear reactors flown during the 1960s by NASA.

Westinghouse Advanced Energy Systems Division (AESD) was a research and development facility for nonconventional renewable energy systems, in the small town of Large in Allegheny County, Pennsylvania [USA]. The site is on the east side of Pa. Rte. 51, about 13 miles (21 km) south of Pittsburgh. Formerly the site of the Westinghouse Astronuclear Laboratory (WANL), Westinghouse Electric Corporation changed the name of the facility, along with its charter, in 1977.

<span class="mw-page-title-main">Multi-mission radioisotope thermoelectric generator</span> Nuclear thermal source whose heat is converted into electricity

The multi-mission radioisotope thermoelectric generator (MMRTG) is a type of radioisotope thermoelectric generator (RTG) developed for NASA space missions such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Department of Energy's Office of Space and Defense Power Systems within the Office of Nuclear Energy. The MMRTG was developed by an industry team of Aerojet Rocketdyne and Teledyne Energy Systems.

<span class="mw-page-title-main">Project Rover</span> U.S. project to build a nuclear thermal rocket

Project Rover was a United States project to develop a nuclear-thermal rocket that ran from 1955 to 1973 at the Los Alamos Scientific Laboratory (LASL). It began as a United States Air Force project to develop a nuclear-powered upper stage for an intercontinental ballistic missile (ICBM). The project was transferred to NASA in 1958 after the Sputnik crisis triggered the Space Race. It was managed by the Space Nuclear Propulsion Office (SNPO), a joint agency of the Atomic Energy Commission (AEC), and NASA. Project Rover became part of NASA's Nuclear Engine for Rocket Vehicle Application (NERVA) project and henceforth dealt with the research into nuclear rocket reactor design, while NERVA involved the overall development and deployment of nuclear rocket engines, and the planning for space missions.

The United States Space Nuclear Propulsion Office (SNPO) was created in 1961 in response to NASA Marshall Space Flight Center's desire to explore the use of nuclear thermal rockets created by Project Rover in NASA space exploration activities. Because Project Rover fell under the aegis of the Atomic Energy Commission, a way had to be found for NASA and the AEC to share a large, expensive, classified program; specifically, Los Alamos was developing technology for NASA to use.

A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.

<span class="mw-page-title-main">Harold Finger</span> American aeronautical nuclear engineer

Harold Benjamin Finger is an American aeronautical nuclear engineer and the former head of the United States nuclear rocket program. He helped establish and lead the Space Nuclear Propulsion Office, a liaison organization between NASA and the Atomic Energy Commission to coordinate efforts to create a nuclear thermal rocket.

<span class="mw-page-title-main">Nuclear power in space</span> Space exploration using nuclear energy

Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown. A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.

<i>Galileo</i> (spacecraft) NASA probe sent to Jupiter (1989–2003)

Galileo was an American robotic space probe that studied the planet Jupiter and its moons, as well as the asteroids Gaspra and Ida. Named after the Italian astronomer Galileo Galilei, it consisted of an orbiter and an entry probe. It was delivered into Earth orbit on October 18, 1989, by Space ShuttleAtlantis, during STS-34. Galileo arrived at Jupiter on December 7, 1995, after gravitational assist flybys of Venus and Earth, and became the first spacecraft to orbit an outer planet.