Commercial Lunar Payload Services

Last updated

Commercial Lunar Payload Services
NASA Selects First Commercial Moon Landing Services for Artemis Program (47974872533).jpg
Models of the first three commercial landers selected for the program. Left to right: Peregrine by Astrobotic Technology, Nova-C by Intuitive Machines, and Z-01 by OrbitBeyond.
Type of project Aerospace
ProductsProposed: Artemis-7, McCandless Lunar Lander, Blue Ghost, XL-1, MX-1, MX-2, MX-5, MX-9, SERIES-2
Current: Peregrine, Nova-C
Owner NASA
Country United States
Established2018;6 years ago (2018)
StatusActive
Website NASA.gov/commercial-lunar-payload-services

Commercial Lunar Payload Services (CLPS) is a NASA program to hire companies to send small robotic landers and rovers to the Moon. Most landing sites are near the lunar south pole [1] [2] where they will scout for lunar resources, test in situ resource utilization (ISRU) concepts, and perform lunar science to support the Artemis lunar program. CLPS is intended to buy end-to-end payload services between Earth and the lunar surface using fixed-price contracts. [3] [4] The program was extended to add support for large payloads starting after 2025.

Contents

The CLPS program is run by NASA's Science Mission Directorate along with the Human Exploration and Operations and Space Technology Mission directorates. NASA expects the contractors to provide all activities necessary to safely integrate, accommodate, transport, and operate NASA payloads, including launch vehicles, lunar lander spacecraft, lunar surface systems, Earth re-entry vehicles and associated resources. [4]

Eight missions have been contracted under the program (not counting one mission contract that was revoked after awarding and another mission contract that was cancelled after the contracted company went bankrupt).

History

NASA has been planning the exploration and use of natural lunar resources for many years. A variety of exploration, science, and technology objectives that could be addressed by regularly sending instruments, experiments and other small payloads to the Moon have been identified by NASA. [3]

When the concept study on the Resource Prospector rover was cancelled in April 2018, NASA officials explained that lunar surface exploration would continue in the future, but using commercial lander services under a new CLPS program. [5] [6] Later that April, NASA announced the Commercial Lunar Payload Services program as the first step in the solicitation for flights to the Moon. [3] [4] [7] In April 2018, CLPS issued a Draft Request for Proposal, [4] and in September 2018 the CLPS Request for Proposal was issued as a formal solicitation. [8]

On November 29, 2018, NASA announced the first nine companies that would be allowed to bid on contracts, [9] which were indefinite delivery, indefinite quantity contracts with a combined maximum contract value of $2.6 billion over the next 10 years. [9]

In February 2018 NASA issued a solicitation for Lunar Surface Instrument and Technology Payloads that may become CLPS customers. Proposals were due by November 2018 and January 17, 2019. NASA makes annual calls for proposals. [10] [11]

On May 31, 2019, NASA announced a list of awards, to Astrobotic, of Pittsburgh, Pa., $79.5 million; Intuitive Machines, of Houston, Texas, $77 million; and OrbitBeyond, $97 million; to launch their Moon landers. [12] However, Orbit Beyond dropped out in July 2019 (with NASA acknowledging termination of contract on July 29, 2019), but remained able to bid on future missions. [13] In January 2024 NASA reported the initial award to Astrobotic had grown to $108 million, to carry just 5 NASA science payloads instead of the initial number of 14, and that the contract value for Intuitive Machines had increased to $118 million. [14] [15]

On July 1, 2019, a $5.6 million contract was awarded to Astrobotic and its partner Carnegie Mellon University to develop MoonRanger, a 13 kg (29 lb) rover to carry payloads on the Moon for NASA's CLPS. [16] [17] Launch was envisioned for either 2021 or 2022. [17] [18] The rover would carry science payloads yet to be determined and developed by other providers, that would focus on scouting and creating 3D maps of a polar region for signs of water ice or lunar pits for entrances to Moon caves. [18] [19] The rover would operate mostly autonomously for up to one week. [19]

On November 18, 2019, NASA added five contractors to the group of companies eligible to bid to deliver large payloads to the lunar surface under the CLPS program: Blue Origin, Ceres Robotics, Sierra Nevada Corporation, SpaceX, and Tyvak Nano-Satellite Systems. [20]

On April 8, 2020, NASA announced it had awarded the fourth (after Astrobotic's, Intuitive Machines' and OrbitBeyond's awards) CLPS contract for Masten Space Systems. The contract, worth $75.9 million, was for Masten's XL-1 lunar lander to deliver payloads from NASA and other customers to the south pole of the Moon in late 2022. [21]

On June 11, 2020 NASA awarded Astrobotic Technology its second CLPS contract. The mission would be the first flight of Astrobotic's larger Griffin lander, delivering NASA's VIPER resource prospecting lunar rover to the Lunar south pole. [22] Griffin weighs 450 kg, the VIPER rover approximately 1,000 pounds (about 450 kg), and the award was for $199.5 million [22] which covers Griffin lander and launch costs. The mission was scheduled for November 2024. [23]

On October 16, 2020 [24] NASA awarded Intuitive Machines their second CLPS contract for Intuitive Machines Mission 2 (IM-2). The contract was worth approximately $47 million. Using Nova-C lander, the mission would land a drill (PRIME-1) combined with a mass spectrometer to the Lunar south pole, to attempt harvesting ice from below the surface. The mission was scheduled for December 2022, using a Falcon 9 rocket.

On February 4, 2021, NASA awarded a CLPS contract to Firefly Aerospace, of Cedar Park, Texas, worth approximately $93.3 million, to deliver a suite of 10 science investigations and technology demonstrations to the Moon in 2023 (later delayed to 2024). This was the sixth award (seventh counting the OrbitBeyond award that was later cancelled) for lunar surface delivery (a lunar lander) under the CLPS initiative. This was the first delivery awarded to Firefly Aerospace, which would provide the lunar delivery service using its Blue Ghost lander, designed and developed at the company Cedar Park facility. [25]

The next (seventh, not counting the OrbitBeyond contract) CLPS contract was awarded by NASA on November 17, 2021 to Intuitive Machines, their 3rd award. Their Nova-C lander was contracted to land four NASA payloads (about 92 kg in total) to study a lunar feature called Reiner Gamma. The mission was known as IM-3 mission and was planned to land on the Moon in 2024. The contract value was $77.5 million and under the contract, Intuitive Machines was responsible for end-to-end delivery services, including payload integration, delivery from Earth to the surface of the Moon, and payload operations. [26]

On July 21, 2022, NASA announced that it had awarded a CLPS contract (8th, not counting OrbitBeyond) worth $73 million to a team led by Draper. The mission targeted Schrödinger Basin on the farside of the Moon, planned for 2025. The mission lander, called SERIES-2 by Draper, would deliver to Schrödinger Basin three experiments to collect seismic data, measure the heat flow and electrical conductivity of the lunar subsurface and measure electromagnetic phenomena created by the interaction of the solar wind and plasma with the lunar surface. This mission would be the first CLPS mission to target the lunar farside, and aims to be the second landing (after China's Chang'e-4) to the Moon's farside. The mission would also develop and deploy two data relay satellites, a must for missions in the lunar farside. Many companies are involved in the mission with Draper being the prime contractor, including ispace. [27] On September 29, 2023, ispace announced that the SERIES-2 lander had been comprehensively redesigned and renamed as APEX 1.0, causing the mission to be delayed to 2026. [28]

Masten Space Systems filed for bankruptcy in July 2022, [29] with nearly all of their assets sold to Astrobotic Technology. [30] This led to the cancellation of Masten's CLPS mission.

On March 14, 2023, NASA awarded Firefly a $112 million task order (8th CLPS contract, not counting OrbitBeyond or Masten Space Systems) for a mission to the far side of the Moon using the second Blue Ghost lander, expected to launch in 2026. [31]

Overview

The lunar south pole region is of special interest because of the occurrence of water ice in permanently shadowed areas inside craters, near constant solar power at the crater rims, and abundant metals and oxygen in the regolith. Moon South Pole.jpg
The lunar south pole region is of special interest because of the occurrence of water ice in permanently shadowed areas inside craters, near constant solar power at the crater rims, and abundant metals and oxygen in the regolith.

The competitive nature of the CLPS program is expected to reduce the cost of lunar exploration, accelerate a robotic return to the Moon, sample return, resource prospecting in the south polar region, and promote innovation and growth of related commercial industries. [34] [ dead link ] The payload development program is called Development and Advancement of Lunar Instrumentation (DALI), and the payload goals are exploration, in situ resource utilization (ISRU), and lunar science. The first instruments were expected to be selected by summer 2019, [4] and the flight opportunities were expected to start in 2021. [34] [4]

Multiple contracts will be issued, and the early payloads will likely be small because of the limited capacity of the initial commercial landers. [7] The first landers and rovers will be technology demonstrators on hardware such as precision landing/hazard avoidance, power generation (solar and RTGs), in situ resource utilization (ISRU), cryogenic fluid management, autonomous operations and sensing, and advanced avionics, mobility, mechanisms, and materials. [4] This program requires that only US launch vehicles can launch the spacecraft. [4] The mass of the landers and rovers can range from miniature to 1,000 kg (2,200 lb), [35] with a 500 kg (1,100 lb) lander targeted to launch in 2022. [34]

The Draft Request for Proposal's covering letter states that the contracts will last up to 10 years. As NASA's need to send payloads to the lunar surface (and other cislunar destinations) arises it will issue Firm-Fixed Price 'task orders' that the approved prime contractors can bid for. A Scope Of Work will be issued with each task order. The CLPS proposals are being evaluated against five Technical Accessibility Standards. [4]

NASA is assuming a cost of one million dollars per kilogram delivered to the lunar surface. (This figure may be revised after a lunar landing when the actual costs are available.) [36]

Contractors

Astrobotic Peregrine NASA Selects First Commercial Moon Landing Services for Artemis Program (47974859117).jpg
Astrobotic Peregrine
Nova-C lander by Intuitive Machines NASA Selects First Commercial Moon Landing Services for Artemis Program (47974873213).jpg
Nova-C lander by Intuitive Machines

The companies selected are considered "main contractors" that can sub-contract projects to other companies of their choice. The first companies granted the right to bid on CLPS contracts were chosen in 2018. [9] [37] [8]

On May 21, 2019, three companies were awarded lander contracts: Astrobotic Technology, Intuitive Machines, OrbitBeyond. [12]

On July 29, 2019, NASA announced that it had granted OrbitBeyond's request to be released from this specific contract, citing "internal corporate challenges." [38]

On November 18, 2019, NASA added five new contractors to the group of companies who are eligible to bid to send large payloads to the surface of the Moon with the CLPS program. [20]

On April 8, 2020, NASA selected Masten Space Systems for a mission to deliver and operate eight payloads – with nine science and technology instruments – to the Moon's South Pole in 2022. [39] [40] [41] Masten Space Systems filed for bankruptcy in July 2022; [29] [30] this led to the cancellation of Masten's CLPS mission.

On February 4, 2021, NASA awarded a CLPS contract to Firefly Aerospace for a mission deliver a suite of 10 science investigations and technology demonstrations to the Moon in 2023. [25]

On July 21, 2022, NASA announced that it had awarded a CLPS contract to Draper Laboratories. [27]

Eligible contractors and contract awards
Selection dateCompanyHeadquartersProposed servicesFirst awarded contract
November 29, 2018 Astrobotic Technology Pittsburgh, Pennsylvania Peregrine and Griffin landersMay 31, 2019
Deep Space Systems Littleton, ColoradoRover; design and development services
Draper Laboratory Cambridge, Massachusettsoriginally proposed Artemis-7 lander; contract awarded for SERIES-2 landerJuly 21, 2022
Firefly Aerospace Cedar Park, Texas Blue Ghost lander [42] [43] |February 4, 2021
Intuitive Machines Houston, Texas Nova-C landerMay 31, 2019
Lockheed Martin Space Littleton, Colorado McCandless Lunar Lander
Masten Space Systems Mojave, California XL-1 landerApril 8, 2020
Moon Express Cape Canaveral, FloridaMX-1, MX-2, MX-5, MX-9 landers; sample return.
OrbitBeyond Edison, New JerseyZ-01 and Z-02 landers [note 1]
November 18, 2019 Blue Origin Kent, Washington Blue Moon lander
Ceres Robotics Palo Alto, California
Sierra Nevada Corporation Louisville, Colorado
SpaceX Hawthorne, California Starship
Tyvak Nano-Satellite Systems Irvine, California

Notes:

  1. Contract awarded 31 May 2019 and withdrawn 29 July 2019

Payload selection

The CLPS contracts for landers and lander missions do not include the payloads themselves. The payloads are developed under separate contracts either at NASA facilities or in commercial facilities. The CLPS landers provide landing, support services, and sample return as specified in each individual contract.

The first batch of science payloads are being developed in NASA facilities, due to the short time available before the first planned flights. Subsequent selections include payloads provided by universities and industry. Calls for payloads are planned to be released each year for additional opportunities.

Lunar Discovery and Exploration Program

The Lunar Discovery and Exploration Program (LDEP) within the NASA Science Mission Directorate establishes contracts for the CLPS program and selects lunar science instruments that will use CLPS services. [44] The CLPS Lunar Instrument Development process includes NASA Provided Lunar Payloads (NPLP), Lunar Surface Instrument and Technology Payloads (LSITP), Payloads and Research Investigations on the Surface of the Moon (PRISM), Development and Advancement of Lunar Instrumentation (DALI), Lunar Terrain Vehicle (LTV) Instruments and Artemis Surface Instruments. [45] LDEP aspires to conduct at least two CLPS missions per year. [46]

Delivery missions for these payloads were solicited in batches.

First batch

The first twelve NASA payloads and experiments were announced on February 21, 2019, [47] [48] and will fly on separate missions. As of February 2021 NASA has awarded contracts for four CLPS lander missions to support these payloads.

Second batch

On July 1, 2019, NASA announced the selection of twelve additional payloads, provided by universities and industry. Seven of these are scientific investigations while five are technology demonstrations. [49]

Third batch

In June 2021, NASA announced the selection of three payloads from its Payloads and Research Investigations on the Surface of the Moon (PRISM) call for proposals. These payloads will be sent to Reiner Gamma and Schrödinger Basin in the 2023–2024 timeframe. [51]

Fourth batch

In June 2022, NASA announced the selection of two new payloads from its Payloads and Research Investigations on the Surface of the Moon (PRISM) call for proposals. [56]

The Lunar Vulkan Imaging and Spectroscopy Explorer (Lunar-VISE) [57] investigation is a suite of five instruments, two of which will be mounted on a stationary lander and three mounted on a mobile rover to be provided as a service by the CLPS vendor. Lunar-VISE will study a rare form of lunar volcanism. Lunar-VISE will be sent to one of the Gruithuisen Domes: Mons Gruithuisen Gamma or Mons Gruithuisen Delta. [56]

The Lunar Explorer Instrument for space biology Applications (LEIA) science suite, is a small CubeSat-based device. LEIA will provide biological research on the Moon – which cannot be simulated or replicated with high fidelity on the Earth or International Space Station – by delivering the yeast Saccharomyces cerevisiae to the lunar surface and studying its response to radiation and lunar gravity. Saccharomyces cerevisiae serves as a model organism used to understand DNA damage response and repair. [56]

List of missions announced under CLPS

Missions contracted

Orbit Beyond returned their task order (cancelling their mission) two months after award in 2019. [22] That mission is not listed.

NoNamePatchLaunchContractorLanderLaunch VehicleAwardedLunar
Destination
NotesOutcome
CLPS-1 Peregrine Mission One 8 January 2024 [58] Astrobotic Technology Peregrine Vulcan May 2019 Gruithuisen Domes [59] 5 CLPS payloads. [60] [61] Propellant leak prevented landing attempt. [62] Failure
CLPS-2 IM-1 Odysseus IM-1 insignia.png 15 February 2024 [63] Intuitive Machines Nova-C Falcon 9 May 2019 [22] Near Malapert-A crater. [64] 6 CLPS payloads. [65] [66] First successful CLPS landing. [67] [68] Success
Blue Ghost M1 TBAQ3 2024 [69] Firefly Aerospace Blue Ghost Falcon 9
[70]
February 2021 [71] Mare Crisium 10 payloads. [72] Planned
VIPER TBANovember 2024 [23] Astrobotic Technology Griffin Falcon Heavy June 2020 Nobile Crater Will deliver a resource prospecting rover. [22] Planned
CLPS-3Intuitive Machines Mission 2 (IM-2)TBAQ4 2024 [73] Intuitive Machines Nova-C Falcon 9 October 2020 [24] South Pole Will land a drill to collect and analyze sub-surface ice.Planned
Intuitive Machines Mission 3 (IM-3)TBAQ1 2025 [73] Intuitive Machines Nova-C Falcon 9 November 2021 [74] [26] Reiner Gamma Will carry payloads including the ESA provided MoonLIGHT. [75] Planned
CLPS-12TBATBA2026 [28] Draper Laboratory APEX 1.0TBAJuly 2022 Schrödinger Basin Will carry LuSEE-Lite. [75] Planned
CS-3Blue Ghost M2TBA2026 Firefly Aerospace Blue Ghost TBAMarch 2023 Far side of the Moon Will deliver a CLMSS payload to lunar orbit; LuSEE-Night to the surface. [76] Planned

Missions announced but not yet contracted

NoNameLaunchContractorLanderLaunch VehicleAwardedLunar
Destination
NotesOutcome
TBAQ4 2025 – Q1 2026TBATBATBA South Pole ESA's Package for Resource Observation and in-Situ Prospecting for Exploration, Commercial exploitation, and Transportation (PROSPECT) payload will fly on this mission. [77] Planned
TBA2027TBATBATBATBA Ina volcanic crater The DIMPLE payload, short for Dating an Irregular Mare Patch with a Lunar Explorer, will fly on a future CLPS provider's mission. DIMPLE will investigate the Ina irregular mare patch. [78] Planned

Cancelled Missions

NoNameLaunchContractorLanderLaunch VehicleAwardedLunar
Destination
Notes
Masten Mission OneIntended: November 2023 Masten Space XL-1 Falcon 9
[79]
April 2020 [80] South Pole Intended to deliver several hundreds of kilograms of payload to the lunar surface. [81] [82] Masten Space filed for bankruptcy in July 2022, [29] with nearly all of their assets sold to Astrobotic Technology. [30]

See also

Related Research Articles

<span class="mw-page-title-main">Lunar lander</span> Spacecraft intended to land on the surface of the Moon

A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2023, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.

<span class="mw-page-title-main">Masten Space Systems</span> Defunct American aerospace company

Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.

<span class="mw-page-title-main">Google Lunar X Prize</span> Inducement prize space competition

The Google Lunar X Prize (GLXP) was a 2007–2018 inducement prize space competition organized by the X Prize Foundation, and sponsored by Google. The challenge called for privately funded teams to be the first to land a lunar rover on the Moon, travel 500 meters, and transmit back to Earth high-definition video and images.

<span class="mw-page-title-main">Astrobotic Technology</span> American space robotics company

Astrobotic Technology inc., commonly referred to as Astrobotic is an American private company that is developing space robotics technology for lunar and planetary missions. It was founded in 2007 by Carnegie Mellon professor Red Whittaker and his associates with the goal of winning the Google Lunar X Prize. The company is based in Pittsburgh, Pennsylvania. Their first launch occurred on January 8, 2024, as part of NASA's Commercial Lunar Payload Services (CLPS) program. The launch carried the company's Peregrine lunar lander on board the first flight of the Vulcan Centaur rocket from Florida's Space Force Station LC-41. The mission was unable to reach the Moon for a soft or hard landing. On June 11, 2020, Astrobotic received a second contract for the CLPS program. NASA will pay Astrobotic US$199.5 million to take the VIPER rover to the Moon, targeting a landing in November 2024.

<span class="mw-page-title-main">Lunar rover</span> Vehicle that travels on the Moons surface

A lunar rover or Moon rover is a space exploration vehicle designed to move across the surface of the Moon. The Apollo program's Lunar Roving Vehicle was driven on the Moon by members of three American crews, Apollo 15, 16, and 17. Other rovers have been partially or fully autonomous robots, such as the Soviet Union's Lunokhods, Chinese Yutus, and the Indian Pragyan. Four countries have had operating rovers on the Moon: the Soviet Union, the United States, China and India.

<span class="mw-page-title-main">Lunar CATALYST</span>

The Lunar CATALYST initiative is an attempt by NASA to encourage the development of robotic lunar landers that can be integrated with United States commercial launch capabilities to deliver payloads to the lunar surface.

<span class="mw-page-title-main">Firefly Aerospace</span> American private aerospace company

Firefly Aerospace is an American private aerospace firm based in Cedar Park, Texas, that develops launch vehicles for commercial launches to orbit. The company completed its $75 million Series A investment round in May 2021, which was led by DADA Holdings. The current company was formed when the assets of the former company Firefly Space Systems were acquired by EOS Launcher in March 2017, which was then renamed Firefly Aerospace. Firefly's stated purpose is to increase access to space, similar to other private spaceflight companies.

MoonLIGHT is a laser retroreflector developed as a collaboration primarily between the University of Maryland in the United States, and the Italian National Institute for Nuclear Physics - National Laboratories of Frascati (INFN-LNF) to complement and expand on the Lunar Laser Ranging experiment started with the Apollo Program in 1969. MoonLIGHT was planned to be launched in July 2020 as a secondary payload on the MX-1E lunar lander built by the private company Moon Express. However, as of February 2020, the launch of the MX-1E has been canceled. In 2018 INFN proposed to the European Space Agency (ESA) the MoonLIGHT Pointing Actuators (MPAc) project and was contracted by ESA to deliver it. MPAc is an INFN development for ESA, with auxiliary support by the Italian Space Agency (ASI) for prototyping work. In 2021, ESA agreed with NASA to launch MPAc with a Commercial Lunar Payload Services (CLPS) mission. Nova-C, the lander on which MPAc will be integrated, is designed by Intuitive Machines and the landing site is Reiner Gamma. The expected launch date of the Nova-C mission carrying the instrument, IM-3, is in 2025.

ispace Inc. is a public Japanese company developing robotic spacecraft and other technology to compete for both transportation and exploration mission contracts from space agencies and other private industries. ispace's mission is to enable its clients to discover, map, and use natural lunar resources.

<span class="mw-page-title-main">Intuitive Machines Nova-C</span> Lunar lander developed by Intuitive Machines

The Intuitive Machines Nova-C, or simply Nova-C, is a class of lunar landers designed by Intuitive Machines (IM) to deliver small payloads to the surface of the Moon. Intuitive Machines was one of three service providers awarded task orders in 2019 for delivery of NASA science payloads to the Moon. The IM-1 lunar lander, named Odysseus, was launched by a SpaceX Falcon 9 rocket on 15 February 2024, reached lunar orbit on 21 February, and landed on the lunar surface on 22 February. This marked the inaugural Nova-C landing on the Moon and the first American spacecraft to perform a soft landing on the Moon in over 50 years. It is the first spacecraft to use methalox propulsion to navigate between the Earth and the Moon.

<span class="mw-page-title-main">Intuitive Machines</span> American aerospace company

Intuitive Machines, Inc. is an American space exploration company headquartered in Houston, Texas. It was founded in 2013 by Stephen Altemus, Kam Ghaffarian, and Tim Crain, to provide lunar surface access, lunar orbit delivery, and communication from lunar distance. Intuitive Machines holds three NASA contracts under the space agency's Commercial Lunar Payload Services (CLPS) initiative, to deliver payloads to the lunar surface.

McCandless Lunar Lander, also known as the McCandless Lunar Delivery Service, is a concept for a robotic lunar lander proposed as one of the commercial cargo vehicles for NASA's Commercial Lunar Payload Services (CLPS). The lander was proposed to NASA for funding by the aerospace company Lockheed Martin, and it is based on the successful Mars landers Phoenix and InSight.

<i>Beresheet</i> Failed Israeli lunar lander

Beresheet was a demonstrator of a small robotic lunar lander and lunar probe operated by SpaceIL and Israel Aerospace Industries. Its aims included inspiring youth and promoting careers in science, technology, engineering, and mathematics (STEM), and landing its magnetometer, time capsule, and laser retroreflector on the Moon. The lander's gyroscopes failed on 11 April 2019 causing the main engine to shut off, which resulted in the lander crashing on the Moon. Its final resting position is 32.5956°N, 19.3496°E.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program that is led by the United States' NASA and was formally established in 2017 via Space Policy Directive 1. The Artemis program is intended to reestablish a human presence on the Moon for the first time since Apollo 17 in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Peregrine Mission One</span> Lunar lander built by Astrobotic Technology

Peregrine Lunar Lander flight 01, commonly referred to as Peregrine Mission One, was an unsuccessful American lunar lander mission. The lander, dubbed Peregrine, was built by Astrobotic Technology and carried payloads for the NASA Commercial Lunar Payload Services (CLPS) program. Peregrine Mission One launched on 8 January 2024, at 2:18 am EST, on the maiden flight of the Vulcan Centaur (Vulcan) rocket. The goal was to land the first U.S.-built lunar lander on the Moon since the crewed Apollo Lunar Module on Apollo 17 in 1972.

<span class="mw-page-title-main">2026 in spaceflight</span> Spaceflight-related events during the year 2026

This article documents expected notable spaceflight events during the year 2026.

<i>VIPER</i> (rover) Planned NASA lunar rover

VIPER is a lunar rover developed by NASA, and currently planned to be delivered to the surface of the Moon in November 2024. The rover will be tasked with prospecting for lunar resources in permanently shadowed areas in the lunar south pole region, especially by mapping the distribution and concentration of water ice. The mission builds on a previous NASA rover concept called Resource Prospector, which was cancelled in 2018.

<span class="mw-page-title-main">IM-1</span> 2024 lunar landing mission

IM-1 was a lunar mission that was carried out jointly by a partnership between the NASA CLPS program and Intuitive Machines (IM), using an Nova-C lunar lander. IM named their lunar lander as its Odysseus lander. The Odysseus lander was the first commercial lunar lander to have successfully soft-landed on the Moon.

References

  1. NASA taps 3 companies for commercial moon missions Archived February 26, 2020, at the Wayback Machine . William Harwood, CBS News. 31 May 2019.
  2. Foust, Jeff (May 31, 2019). "NASA awards contracts to three companies to land payloads on the moon". Space News . Retrieved November 26, 2022.
  3. 1 2 3 "NASA Expands Plans for Moon Exploration: More Missions, More Science". NASA. April 30, 2018. Archived from the original on February 16, 2020. Retrieved June 4, 2018.
  4. 1 2 3 4 5 6 7 8 9 "Draft Commercial Lunar Payload Services – CLPS solicitation". Federal Business Opportunities. NASA. Archived from the original on October 8, 2018. Retrieved June 4, 2018.
  5. Foust, Jeff (May 4, 2018). "NASA argues Resource Prospector no longer fit into agency's lunar exploration plans". Space News . Retrieved November 26, 2022.
  6. NASA emphasizes commercial lunar lander plans with Resource Prospector cancellation Archived October 18, 2018, at WebCite . Jeff Foust, Space News. April 28, 2018.
  7. 1 2 NASA cancels lunar rover, shifts focus to commercial moon landers Archived June 2, 2019, at the Wayback Machine . Stephen Clark, Space News. June 1, 2018.
  8. 1 2 "Commercial Lunar Payload Services
    Solicitation Number: 80HQTR18R0011R"
    . Federal Business Opportunities. NASA. Archived from the original on May 9, 2020. Retrieved January 29, 2019.
  9. 1 2 3 "NASA Announces New Partnerships for Commercial Lunar Payload Delivery Services". NASA.GOV. NASA. November 29, 2018. Archived from the original on November 25, 2020. Retrieved November 29, 2018.
  10. "NASA Calls for Instruments, Technologies for Delivery to the Moon". NASA. October 18, 2018. Archived from the original on September 26, 2019. Retrieved December 21, 2018.
  11. "Lunar Surface Instrument and Technology Payloads". NSPIRES – NASA Solicitation and Proposal Integrated Review and Evaluation System. NASA. Retrieved December 21, 2018.
  12. 1 2 "NASA chooses three companies to send landers to the moon". UPI. Archived from the original on January 22, 2020. Retrieved June 1, 2019.
  13. Private Company Orbit Beyond Drops Out of 2020 NASA Moon-Landing Deal. Archived April 6, 2020, at the Wayback Machine Mike Wall, Space.com. July 30, 2019.
  14. https://twitter.com/SpcPlcyOnline/status/1743381586374967705 [ bare URL ]
  15. "Final preparations underway for launch of first Intuitive Machines lunar lander". February 2024.
  16. Astrobotic Awarded US$5.6 Million NASA Contract to Deliver Autonomous Moon Rover Archived March 6, 2021, at the Wayback Machine Astrobotic July 1, 2019
  17. 1 2 Astrobotic gets $5.6m NASA contract to develop MoonRanger rover Archived October 9, 2020, at the Wayback Machine Brittany A. Roston, Slash Gear July 1, 2019
  18. 1 2 Astrobotic awarded NASA funding to build autonomous rover Archived October 1, 2021, at the Wayback Machine Julia Mericle, Pittsburgh Business Times July 2, 2019
  19. 1 2 NASA Selects Carnegie Mellon, Astrobotic To Build Lunar Robot Archived March 10, 2021, at the Wayback Machine Byron Spice, Carnegie Mellon University July 3, 2019
  20. 1 2 Grush, Loren (November 18, 2019). "NASA partners with SpaceX, Blue Origin, and more to send large payloads to the Moon 5 – The companies are aiming to land in the early 2020s". The Verge. Archived from the original on December 6, 2019. Retrieved May 25, 2020.
  21. Foust, Jeff (April 8, 2020). "Masten wins NASA lunar lander award". Space News . Retrieved November 26, 2022.
  22. 1 2 3 4 5 "Astrobotic Awarded $199.5 Million Contract to Deliver NASA Moon Rover | Astrobotic". Archived from the original on June 13, 2020. Retrieved June 13, 2020.
  23. 1 2 "NASA Replans CLPS Delivery of VIPER to 2024 to Reduce Risk". NASA . July 18, 2022. Retrieved July 18, 2022.
  24. 1 2 Brown, Katherine (October 16, 2020). "NASA Selects Intuitive Machines to Land Water-Measuring Payload on the Moon". NASA. Archived from the original on October 18, 2020. Retrieved November 15, 2020.
  25. 1 2 "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023". NASA. February 4, 2021. Archived from the original on February 4, 2021. Retrieved March 5, 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  26. 1 2 "NASA Selects Intuitive Machines for New Lunar Science Delivery". NASA (Press release). November 17, 2021. Retrieved November 17, 2021.
  27. 1 2 "Draper wins NASA contract for farside lunar lander mission". July 22, 2022.
  28. 1 2 Foust, Jeff (September 29, 2023). "Ispace revises design of lunar lander for NASA CLPS mission". SpaceNews . Retrieved September 30, 2023.
  29. 1 2 3 Foust, Jeff (July 29, 2022). "Masten Space Systems files for bankruptcy". SpaceNews . Retrieved March 13, 2023.
  30. 1 2 3 Foust, Jeff (September 11, 2022). "Court approves sale of Masten assets to Astrobotic". SpaceNews . Retrieved March 13, 2023.
  31. Foust, Jeff (March 15, 2023). "Firefly wins second NASA CLPS mission". SpaceNews . Retrieved April 5, 2023.
  32. Why the Lunar South Pole? Archived September 5, 2020, at the Wayback Machine Adam Hugo. The Space Resource. 25 April 2029.
  33. Lunar Resources: Unlocking the Space Frontier. Archived July 17, 2019, at the Wayback Machine Paul D. Spudis. Ad Astra, Volume 23 Number 2, Summer 2011. Published by the National Space Society. Retrieved on 16 July 2019.
  34. 1 2 3 "NASA Expands Plans for Moon Exploration: More Missions, More Science". SpaceRef. May 3, 2018. Archived from the original on October 1, 2021. Retrieved November 26, 2022.
  35. Werner, Debra (May 24, 2018). "NASA to begin buying rides on commercial lunar landers by year's end]". Space News . Retrieved November 26, 2022.
  36. Report Series: Committee on Astrobiology and Planetary Science (2019). Review of the Commercial Aspects of NASA SMD's Lunar Science and Exploration. The National Academies Press. p. 15. doi:10.17226/25374. ISBN   978-0-309-48928-7. S2CID   240868930. Archived from the original on February 10, 2019. Retrieved February 9, 2019.
  37. Draft Concepts for Commercial Lunar Landers Archived August 1, 2020, at the Wayback Machine . NASA, CLPS. Accessed on December 12, 2018.
  38. "Commercial lunar lander company terminates NASA contract". SpaceNews.com. July 30, 2019. Retrieved November 26, 2022.
  39. "NASA Awards Contract to Deliver Science, Tech to Moon". April 8, 2020. Archived from the original on April 28, 2021. Retrieved April 4, 2021.
  40. "Masten wins NASA lunar lander award". April 8, 2020. Retrieved April 23, 2020.
  41. "Masten Space Systems Awarded $76M to Help NASA Deliver Lunar Sci-Tech Payloads". April 9, 2020. Archived from the original on May 9, 2020. Retrieved April 15, 2020.
  42. Jeff Foust (July 9, 2019). "Firefly to partner with IAI on lunar lander". Space News. Archived from the original on July 9, 2019. Retrieved September 15, 2019.
  43. Foust, Jeff (February 4, 2021). "Firefly wins NASA CLPS lunar lander contract". SpaceNews . Retrieved February 4, 2021.
  44. "Lunar Discovery and Exploration". NASA.
  45. "Lunar Instrument Development". NASA.
  46. "FY 2025 Budget Request" (PDF). NASA.
  47. NASA selects experiments to fly aboard commercial lunar landers Archived July 17, 2019, at the Wayback Machine . Derek Richardson, Spaceflight Insider. February 26, 2019,
  48. NASA picks 12 lunar experiments that could fly this year Archived February 27, 2019, at the Wayback Machine . David Szondy, New Atlas. 21 February 2019.
  49. NASA Selects 12 New Lunar Science, Technology Investigations Archived August 19, 2019, at the Wayback Machine . Grey Hautaluoma, NASA Headquarters Press Release 19-053. July 1, 2019
  50. https://www.hou.usra.edu/meetings/lpsc2020/pdf/1439.pdf
  51. 1 2 3 "NASA Selects New Science Investigations for Future Moon Deliveries". NASA (Press release). June 10, 2021. Archived from the original on June 15, 2021. Retrieved July 1, 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  52. https://www.swri.org/press-release/swri-developed-instrument-delivered-lunar-lander-mission
  53. https://www.ball.com/getattachment/b3ebc93e-85e0-45bd-abfd-0f5e3a285f74/D3611-L-CIRiS-0922.pdf
  54. https://www.planetary.org/articles/planetvac-clps-mmx-announcement
  55. "Lunar Vertex" . Retrieved January 12, 2024.
  56. 1 2 3 "NASA Selects New Instruments for Priority Artemis Science on Moon" (Press release). Retrieved January 12, 2024.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  57. "Lunar Vulkan Imaging and Spectroscopy Explorer" . Retrieved January 12, 2024.
  58. McCrea, Aaron (January 8, 2024). "Vulcan successfully launches Peregrine lunar lander on inaugural flight". NASASpaceFlight. Retrieved January 8, 2024.
  59. Foust, Jeff (February 2, 2023). "NASA changes landing site for Peregrine lunar lander" . Retrieved February 5, 2023.
  60. "NASA instruments set to fly on Peregrine commercial lunar lander". January 5, 2024.
  61. Berger, Eric (June 25, 2021). "Rocket Report: China to copy SpaceX's Super Heavy? Vulcan slips to 2022". Ars Technica . Archived from the original on June 29, 2021. Retrieved June 30, 2021.
  62. Fisher, Jackie Wattles, Kristin (January 8, 2024). "Peregrine mission abandons Moon landing attempt after suffering 'critical' fuel loss". CNN. Retrieved January 9, 2024.{{cite web}}: CS1 maint: multiple names: authors list (link)
  63. Foust, Jeff (December 19, 2023). "Intuitive Machines delays first lunar lander launch to February". SpaceNews . Retrieved December 20, 2023.
  64. "NASA Redirects Intuitive Machines' First Mission to the Lunar South Pole Region". Intuitive Machines. February 6, 2023. Retrieved February 6, 2023.
  65. Riusech, Natalia (February 13, 2024). "Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander". NASA . Archived from the original on March 2, 2024. Retrieved March 3, 2024.
  66. Jones, Andrew (February 22, 2024). "Here's what just landed on the moon aboard Intuitive Machines' Odysseus lander". Space.com . Retrieved March 3, 2024.
  67. Dunn, Marcia (February 22, 2024). "Private lander makes first US moon landing in more than 50 years". The Associated Press . Retrieved March 3, 2024.
  68. Chang, Kenneth (February 22, 2024). "A U.S.-Built Spacecraft Lands on the Moon for the First Time Since 1972". The New York Times . Retrieved March 3, 2024.
  69. Alamalhoadei, Aria (November 6, 2023). "Firefly's Blue Ghost lander represents a big bet on a future lunar economy". TechCrunch. Retrieved November 6, 2023.
  70. "Firefly Aerospace Awards Contract to SpaceX to Launch Blue Ghost Mission to Moon in 2023". Business Wire. May 20, 2021. Archived from the original on May 20, 2021. Retrieved May 20, 2021.
  71. "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023". NASA (Press release). February 4, 2021. Archived from the original on February 4, 2021. Retrieved February 4, 2021.
  72. "Lunar Lander". Firefly Aerospace . February 1, 2021. Archived from the original on February 5, 2021. Retrieved February 4, 2021.
  73. 1 2 Foust, Jeff (February 13, 2024). "Intuitive Machines ready for launch of its first lunar lander". SpaceNews . Retrieved February 17, 2024.
  74. "NASA Selects Intuitive Machines to Deliver 4 Lunar Payloads in 2024". Intuitive Machines . November 17, 2021. Retrieved November 17, 2021.
  75. 1 2 "Amendment 68: New Opportunity in ROSES: E.11 Payloads and Research Investigations on the Surface of the Moon (PRISM)" (PDF). NSPIRES . November 5, 2020. Archived (PDF) from the original on September 9, 2021. Retrieved September 9, 2021.
  76. "Blue Ghost Mission 2". Firefly Aerospace. Retrieved September 18, 2023.
  77. "Amendment 34: Payloads and Research Investigations on the Surface of the Moon (PRISM) final text and due dates" (PDF). NSPIRES . September 2, 2021. Archived (PDF) from the original on September 6, 2021. Retrieved September 9, 2021.
  78. "New NASA Artemis Instruments to Study Volcanic Terrain on the Moon". July 14, 2023.
  79. SpaceX to Launch Masten Lunar Mission in 2022 Archived September 3, 2020, at the Wayback Machine . Meagan Crawford, Masten Press Release. August 26, 2020.
  80. "Masten wins NASA lunar lander award". April 8, 2020.
  81. "XL-1 — Masten Space Systems". Archived from the original on June 20, 2020. Retrieved June 13, 2020.
  82. "Masten Space Systems". Archived from the original on June 15, 2020. Retrieved June 13, 2020.