Firefly Aerospace Blue Ghost

Last updated

Blue Ghost
Manufacturer Firefly Aerospace
DesignerFirefly Aerospace
Country of originUnited States
OperatorFirefly Aerospace
ApplicationsLunar payload delivery and support
Specifications
Spacecraft type Lunar lander
Payload capacity150 kg [1]
Power650W
Production
StatusTesting
On order2
Built1
Launched0
Operational0

Firefly Aerospace Blue Ghost, or simply Blue Ghost, is a class of lunar landers designed by Firefly Aerospace to deliver small payloads to the surface of the Moon. The first Blue Ghost mission is planned to launch in 2024. [2]

Contents

Funding

In 2017, Space Policy Directive 1 signaled the intention of returning NASA astronauts to the Moon. In 2018, NASA solicited bids from nine companies, including Firefly Aerospace, for the Commercial Lunar Payload Services (CLPS) program. CLPS is part of the NASA Artemis program; one of the long-term goals of Artemis is establishing a permanent crewed base on the Moon. [3]

In 2021, Firefly Aerospace received a NASA contract that was valued at US$93 million to conduct lunar landings for NASA. [4]

Overview

Power on board the Blue Ghost lander is provided via solar panels that have multiple deployment options. The solar array provides a maximum of 650 W. The lander is communications enabled and features multiple layers of insulation, heating system and four landing legs. The company touts the landers fully in house end to end manufacturing and testing process as a differentiator among the CLPS Lunar Landers. [5]

Missions

Blue Ghost M1

On February 4, 2021, NASA awarded Firefly a contract worth US$93.3 million to deliver a suite of ten science investigations and technology demonstrations to the Moon in 2023. The award is part of the CLPS initiative, in which NASA is securing the service of commercial partners to quickly land science and technology payloads on the lunar surface as part of the Artemis program.

Firefly Aerospace is the prime contractor responsible for end-to-end delivery services, including payload integration, launch from Earth, landing on the Moon, and mission operations. Subcontractors include SolAero By Rocket Lab, providing the solar panels, and ASI by Rocket Lab, providing the lander flight software, ground software, GN&C software, trajectory design, orbit determination, and avionics/flight software testbed integration. This was the sixth award for lunar surface delivery under the CLPS initiative, and the first delivery awarded to Firefly Aerospace. Firefly's Cedar Park facility will serve as the company's mission operations center for the 2023 delivery and the location of payload integration, with Rocket Lab serving as the backup mission operations center.

The mission is planned to land at Mare Crisium, a 500 km (310 mi) wide basin visible from Earth. Instruments will gather data to provide insight into the Moon's regolith – loose, fragmented rock and soil – properties, geophysical characteristics, and the interaction of solar wind and Earth's magnetic field, [6] helping to prepare for human missions to the lunar surface. On May 20, 2021, Firefly selected SpaceX's Falcon 9 as the launch vehicle for the first mission, as its own Alpha rocket does not have the performance or payload volume needed to launch Blue Ghost. [7] Firefly's future Beta launch vehicle is expected to support future Blue Ghost missions. [8]

On April 26, 2022, Firefly announced the completion of the Integration Readiness Review (IRR) for the first Blue Ghost lander, M1, with the launch now expected to occur in 2024. [9] In November 2023 Firefly provided a more precise time window for the mission, occurring between the third and the fourth quarters of 2024. In May 2024, the first engines for Blue Ghost were completed. [10] In June 2024, the company announced the engines were integrated and the lander would soon be scheduled for launch. [11]

Payloads

The payloads, collectively expected to total 94 kg (207 lb) in mass, include: [6]

  • The Regolith Adherence Characterization (RAC), which will determine how lunar regolith sticks to a range of materials exposed to the Moon's environment during landing and lander operations. Components will be derived from the MISSE-FF facility currently on the International Space Station (ISS).
  • The Next Generation Lunar Retroreflectors (NGLR), which will serve as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission also will provide data that could be used to understand various aspects of the lunar interior and address fundamental physics questions.
  • The Lunar Environment Heliospheric X-ray Imager (LEXI), which will capture images of the interaction of Earth's magnetosphere with the flow of charged particles from the Sun, called the solar wind.
  • The Reconfigurable, Radiation Tolerant Computer System (RadPC), which aims to demonstrate a radiation-tolerant computing technology. Due to the Moon's lack of atmosphere and magnetic field, radiation from the Sun will be a challenge for electronics. This investigation also will characterize the radiation effects on the lunar surface.
  • The Lunar Magnetotelluric Sounder (LMS), which is designed to characterize the structure and composition of the Moon's mantle by studying electric and magnetic fields. The investigation will make use of a flight-spare magnetometer, a device that measures magnetic fields, originally made for the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft currently orbiting Mars.
  • The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER), which is designed to measure heat flow from the interior of the Moon. The probe will attempt to drill 2.13–3.05 m (7 ft 0 in – 10 ft 0 in) into the lunar regolith to investigate the Moon's thermal properties at different depths.
  • The Lunar PlanetVac (LPV), which is designed to acquire lunar regolith from the surface and transfer it to other instruments that would analyze the material or put it in a container that another spacecraft could return to Earth.
  • Stereo CAmeras for Lunar Plume Surface Studies (SCALPSS 1.1), which will capture video and still images of the area under the lander from when the engine plume first disturbs the lunar surface through engine shutdown. Long-focal-length cameras will determine the pre-landing surface topography. Photogrammetry will be used to reconstruct the changing surface during landing. Understanding the physics of rocket exhaust on the regolith, and the displacement of dust, gravel, and rocks is critical to understanding how to best avoid kicking up surface materials during the terminal phase of flight/landing on the Moon and other celestial bodies.
  • The Electrodynamic Dust Shield (EDS), which will generate a non-uniform electric field using varying high voltage on multiple electrodes. This traveling field, in turn, carries away the particles and has potential applications in thermal radiators, spacesuit fabrics, visors, camera lenses, solar panels, and many other technologies.
  • The Lunar GNSS Receiver Experiment (LuGRE), which is based on GPS. LuGRE will continue to extend the reach of GPS signals and, if successful, be the first to discern GPS signals at lunar distances.

Blue Ghost M2

The second Blue Ghost lander is scheduled for launch in 2026. [12]

See also

Other commercial lunar lander programs
Lunar lander programs by country

Related Research Articles

<span class="mw-page-title-main">Blue Origin</span> American aerospace company

Blue Origin Enterprises, L.P., commonly referred to as Blue Origin is an American aerospace manufacturer, government contractor, launch service provider, and space technologies company headquartered in Kent, Washington, United States. The company makes rocket engines for United Launch Alliance (ULA)'s Vulcan rocket and manufactures their own rockets, spacecraft, satellites, and heavy-lift launch vehicles. The company is the second provider of lunar lander services for NASA's Artemis program and was awarded a $3.4 billion contract. The four rocket engines the company has in production are the BE-3U, BE-3PM, BE-4 and the BE-7.

<span class="mw-page-title-main">Lunar lander</span> Spacecraft intended to land on the surface of the Moon

A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2024, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.

<span class="mw-page-title-main">Masten Space Systems</span> Defunct American aerospace company

Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.

<span class="mw-page-title-main">Astrobotic Technology</span> American space robotics company

Astrobotic Technology inc., commonly referred to as Astrobotic is an American private company that is developing space robotics technology for lunar and planetary missions. It was founded in 2007 by Carnegie Mellon professor Red Whittaker and his associates with the goal of winning the Google Lunar X Prize. The company is based in Pittsburgh, Pennsylvania. Their first launch occurred on January 8, 2024, as part of NASA's Commercial Lunar Payload Services (CLPS) program. The launch carried the company's Peregrine lunar lander on board the first flight of the Vulcan Centaur rocket from Florida's Space Force Station LC-41. The mission was unable to reach the Moon for a soft or hard landing. On June 11, 2020, Astrobotic received a second contract for the CLPS program. NASA would pay Astrobotic US$199.5 million to take the VIPER rover to the Moon, targeting a landing in November 2024. In July 2024, NASA Announced that VIPER had been cancelled.

Moon Express is an American privately held company formed in 2010 by a group of Silicon Valley and space entrepreneurs. It had the goal of winning the $30 million Google Lunar X Prize, and of ultimately mining the Moon for natural resources of economic value. The company was not able to make a launch attempt to reach the Moon by March 31, 2018, the deadline for the prize.

The (Japanese) Lunar Exploration Program is a program of robotic and human missions to the Moon undertaken by the Japanese Aerospace Exploration Agency (JAXA) and its division, the Institute of Space and Astronautical Science (ISAS). It is also one of the three major enterprises of the JAXA Space Exploration Center (JSPEC). The main goal of the program is "to elucidate the origin and evolution of the Moon and utilize the Moon in the future".

<span class="mw-page-title-main">Firefly Aerospace</span> American private aerospace company

Firefly Aerospace is an American private aerospace firm based in Cedar Park, Texas, that develops launch vehicles for commercial launches to orbit. The company completed its $75 million Series A investment round in May 2021, which was led by DADA Holdings. The current company was formed when the assets of the former company Firefly Space Systems were acquired by EOS Launcher in March 2017, which was then renamed Firefly Aerospace. Firefly's stated purpose is to increase access to space, similar to other private spaceflight companies.

<span class="mw-page-title-main">Artemis 3</span> Third orbital flight of the Artemis program

Artemis 3 is planned to be the first crewed Moon landing mission of the Artemis program and the first crewed flight of the Starship HLS lander. Artemis 3 is planned to be the second crewed Artemis mission and the first American crewed lunar landing since Apollo 17 in December 1972. In December 2023, the Government Accountability Office reported that the mission is not likely to occur before 2027; as of January 2024, NASA officially expects Artemis 3 to launch no earlier than September 2026 due to issues with the valves in Orion's life support system.

<span class="mw-page-title-main">Blue Moon (spacecraft)</span> Lunar lander family developed by Blue Origin for the Artemis program

Blue Moon is a family of lunar landers and their associated infrastructure, intended to carry humans and cargo to the Moon, under development by a consortium led by Blue Origin and including Lockheed Martin, Draper, Boeing, Astrobotic, and Honeybee Robotics. Two versions of Blue Moon are under development: a robotic lander planned to land on the Moon in 2024, and a larger human lander planned to land a crew of four astronauts on the lunar surface for the NASA Artemis V mission in 2029.

<span class="mw-page-title-main">Resource Prospector</span>

Resource Prospector is a cancelled mission concept by NASA of a rover that would have performed a survey expedition on a polar region of the Moon. The rover was to attempt to detect and map the location of volatiles such as hydrogen, oxygen and lunar water which could foster more affordable and sustainable human exploration to the Moon, Mars, and other Solar System bodies.

<span class="mw-page-title-main">Commercial Lunar Payload Services</span> NASA program contracting commercial transportation services to the Moon

Commercial Lunar Payload Services (CLPS) is a NASA program to hire companies to send small robotic landers and rovers to the Moon. Most landing sites are near the lunar south pole where they will scout for lunar resources, test in situ resource utilization (ISRU) concepts, and perform lunar science to support the Artemis lunar program. CLPS is intended to buy end-to-end payload services between Earth and the lunar surface using fixed-price contracts. The program achieved the first landing on the moon by a commercial company in history with the IM-1 mission in 2024. The program was extended to add support for large payloads starting after 2025.

<span class="mw-page-title-main">OrbitBeyond</span> Lunar exploration company

Orbit Beyond, Inc., usually stylized as ORBITBeyond, is an aerospace company that builds technologies for lunar exploration. Its products include configurable delivery lunar landers with a payload capacity of up to 300 kg (660 lb), and rovers.

<span class="mw-page-title-main">Intuitive Machines Nova-C</span> Lunar lander developed by Intuitive Machines

The Intuitive Machines Nova-C, or simply Nova-C, is a class of lunar landers designed by Intuitive Machines (IM) to deliver small payloads to the surface of the Moon. Intuitive Machines was one of three service providers awarded task orders in 2019 for delivery of NASA science payloads to the Moon. The IM-1 lunar lander, named Odysseus, was launched by a SpaceX Falcon 9 rocket on 15 February 2024, reached lunar orbit on 21 February, and landed on the lunar surface on 22 February. This marked the inaugural Nova-C landing on the Moon and the first American spacecraft to perform a soft landing on the Moon in over 50 years. It is the first spacecraft to use methalox propulsion to navigate between the Earth and the Moon.

McCandless Lunar Lander, also known as the McCandless Lunar Delivery Service, is a concept for a robotic lunar lander proposed as one of the commercial cargo vehicles for NASA's Commercial Lunar Payload Services (CLPS). The lander was proposed to NASA for funding by the aerospace company Lockheed Martin, and it is based on the successful Mars landers Phoenix and InSight.

<i>Beresheet</i> Failed Israeli lunar lander

Beresheet was a demonstrator of a small robotic lunar lander and lunar probe operated by SpaceIL and Israel Aerospace Industries. Its aims included inspiring youth and promoting careers in science, technology, engineering, and mathematics (STEM), and landing its magnetometer, time capsule, and laser retroreflector on the Moon. The lander's gyroscopes failed on 11 April 2019 causing the main engine to shut off, which resulted in the lander crashing on the Moon. Its final resting position is 32.5956°N, 19.3496°E.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program that is led by the United States' National Aeronautics and Space Administration (NASA) and was formally established in 2017 via Space Policy Directive 1. The Artemis program is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 Moon mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Starship HLS</span> Lunar lander variant of SpaceX Starship

Starship HLS is a lunar lander variant of the Starship spacecraft that is slated to transfer astronauts from a lunar orbit to the surface of the Moon and back. It is being designed and built by SpaceX under the Human Landing System contract to NASA as a critical element of NASA's Artemis program to land a crew on the Moon.

<span class="mw-page-title-main">EagleCam</span> CubeSat camera system to capture Odysseus landing

EagleCam was a deployable CubeSat camera system designed to capture the lunar landing of the Nova-C Odysseus lander on the Moon. Designed and manufactured by staff and students working in the Space Technologies Laboratory at Embry–Riddle Aeronautical University, Daytona Beach, it was intended to deploy from Odysseus and take the first photographs of a spacecraft landing on the moon from a third-person perspective. It also planned to test an electrodynamic dust shield system in space for the first time and utilize a Wi-Fi connection to transmit data for the first time on the lunar surface.

References

  1. "Firefly's Blue Ghost lander represents a big bet on a future lunar economy". 6 November 2023.
  2. "NASA - NSSDCA - Spacecraft - Details". nssdc.gsfc.nasa.gov. Retrieved 13 May 2024.
  3. "Overview of NASA's Commercial Lunar Payload Services Program". New Space Economy. 8 January 2024. Retrieved 13 May 2024.
  4. "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023 - NASA" . Retrieved 13 May 2024.
  5. "Firefly Aerospace Completes Blue Ghost Lunar Lander Structure Ahead of Moon Landing for NASA". www.prnewswire.com (Press release). Retrieved 13 May 2024.
  6. 1 2 "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023" (Press release). NASA. 4 February 2021. Archived from the original on 4 February 2021. Retrieved 5 March 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. Foust, Jeff (20 May 2021). "Firefly selects SpaceX to launch its lunar lander". SpaceNews. Retrieved 22 May 2021.
  8. Firefly Aerospace [@firefly_space] (20 May 2021). "Alpha rocket does not have the performance or payload volume needed to launch Blue Ghost – F9 does. Our future Beta launch vehicle will support Blue Ghost launch" (Tweet). Retrieved 20 May 2021 via Twitter.
  9. "Firefly Aerospace Completes Blue Ghost Lunar Lander Structure Ahead of Moon Landing for NASA". 4 October 2023.
  10. Parsonson, Andrew (29 April 2024). "Nammo UK Prepares to Deliver Engine for US Lunar Lander". European Spaceflight. Retrieved 4 May 2024.
  11. "One step closer to launch and landing as our Firefly team installed Blue Ghost's main engine".
  12. "Blue Ghost Mission 2". Firefly Aerospace. Retrieved 14 June 2024.