Firefly Aerospace Blue Ghost

Last updated

Blue Ghost
Manufacturer Firefly Aerospace
DesignerFirefly Aerospace
Country of originUnited States
OperatorFirefly Aerospace
ApplicationsLunar payload delivery and support
Specifications
Spacecraft type Lunar lander
Payload capacity150 kg [1]
Power650W
Production
StatusTesting
On order2
Built1
Launched0
Operational0

Firefly Aerospace Blue Ghost, or simply Blue Ghost, is a class of lunar landers designed and manufactured by Firefly Aerospace (Firefly). Firefly plans to operate Blue Ghost landers to deliver small payloads to the surface of the Moon. The first Blue Ghost mission is scheduled for launch in January 2025. [2] [3] [4]

Contents

Overview

Firefly is the prime contractor for lunar delivery services using Blue Ghost landers. Firefly provides or sub-contracts Blue Ghost payload integration, launch from Earth, landing on the Moon and mission operations. Firefly's Cedar Park facility will serve as the company's mission operations center and the location of payload integration, with Rocket Lab serving as the backup mission operations center.

Blue Ghost has four landing legs, communications, heating and solar power systems, and features multiple layers of insulation. The Blue Ghost solar panels, from subcontractor SolAero By Rocket Lab, provide a maximum of 650 W of power. ASI by Rocket Lab provides flight, ground and GN&C software, trajectory design, orbit determination, and software testbed integration. Firefly asserts that in house end to end manufacturing and testing of the Blue Ghost structure is a differentiator among the CLPS landers. [5] [6]

NASA awarded Firefly the first Blue Ghost lunar delivery task order in February, 2021 as part of the Commercial Lunar Payload Services (CLPS) initiative.

Missions

Blue Ghost M1

On February 4, 2021, NASA awarded Firefly a contract worth US$93.3 million to deliver a suite of ten science investigations and technology demonstrations to the Moon in 2023. The award is part of the CLPS initiative, in which NASA is securing the service of commercial partners to quickly land science and technology payloads on the lunar surface as part of the Artemis program.

The mission is planned to land at Mare Crisium, a 500 km (310 mi) wide basin visible from Earth. Instruments will gather data to provide insight into the Moon's regolith – loose, fragmented rock and soil – properties, geophysical characteristics, and the interaction of solar wind and Earth's magnetic field, [7] helping to prepare for human missions to the lunar surface. On May 20, 2021, Firefly selected SpaceX's Falcon 9 as the launch vehicle for the first mission, as its own Alpha rocket does not have the performance or payload volume needed to launch Blue Ghost. [8] Firefly's future MLV launch vehicle is expected to support future Blue Ghost missions. [9]

Timeline

  • On April 26, 2022, Firefly announced the completion of the Integration Readiness Review (IRR) for the first Blue Ghost lander, M1, with the launch now expected to occur in 2024. [10]
  • In November 2023 Firefly provided a more precise time window for the mission, occurring between the third and the fourth quarters of 2024.
  • In May 2024, the first engines for Blue Ghost were completed. [11]
  • In June 2024, the company announced the engines were integrated and the lander would soon be scheduled for launch. [12]
  • In July 2024, the company reiterated a Q4 2024 launch. [13]
  • Pre launch environmental testing began in August at JPL. [14]
  • In November 2024, the company announced that Blue Ghost was ready for launch, and would launch in mid-January 2025. [15]

Payloads

The payloads, collectively expected to total 94 kg (207 lb) in mass, include: [7]

  • The Regolith Adherence Characterization (RAC), which will determine how lunar regolith sticks to a range of materials exposed to the Moon's environment during landing and lander operations. Components will be derived from the MISSE-FF facility currently on the International Space Station (ISS).
  • The Next Generation Lunar Retroreflectors (NGLR), which will serve as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission also will provide data that could be used to understand various aspects of the lunar interior and address fundamental physics questions.
  • The Lunar Environment Heliospheric X-ray Imager (LEXI), which will capture images of the interaction of Earth's magnetosphere with the flow of charged particles from the Sun, called the solar wind.
  • The Reconfigurable, Radiation Tolerant Computer System (RadPC), which aims to demonstrate a radiation-tolerant computing technology. Due to the Moon's lack of atmosphere and magnetic field, radiation from the Sun will be a challenge for electronics. This investigation also will characterize the radiation effects on the lunar surface.
  • The Lunar Magnetotelluric Sounder (LMS), which is designed to characterize the structure and composition of the Moon's mantle by studying electric and magnetic fields. The investigation will make use of a flight-spare magnetometer, a device that measures magnetic fields, originally made for the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft currently orbiting Mars.
  • The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER), which is designed to measure heat flow from the interior of the Moon. The probe will attempt to drill 2.13–3.05 m (7 ft 0 in – 10 ft 0 in) into the lunar regolith to investigate the Moon's thermal properties at different depths.
  • The Lunar PlanetVac (LPV), which is designed to acquire lunar regolith from the surface and transfer it to other instruments that would analyze the material or put it in a container that another spacecraft could return to Earth.
  • Stereo CAmeras for Lunar Plume Surface Studies (SCALPSS 1.1), which will capture video and still images of the area under the lander from when the engine plume first disturbs the lunar surface through engine shutdown. Long-focal-length cameras will determine the pre-landing surface topography. Photogrammetry will be used to reconstruct the changing surface during landing. Understanding the physics of rocket exhaust on the regolith, and the displacement of dust, gravel, and rocks is critical to understanding how to best avoid kicking up surface materials during the terminal phase of flight/landing on the Moon and other celestial bodies.
  • The Electrodynamic Dust Shield (EDS), which will generate a non-uniform electric field using varying high voltage on multiple electrodes. This traveling field, in turn, carries away the particles and has potential applications in thermal radiators, spacesuit fabrics, visors, camera lenses, solar panels, and many other technologies.
  • The Lunar GNSS Receiver Experiment (LuGRE), which is based on GPS. LuGRE will continue to extend the reach of GPS signals and, if successful, be the first to discern GPS signals at lunar distances.

Blue Ghost M2

The second Blue Ghost lander is scheduled for launch in 2026. [16]

Funding

In 2017, Space Policy Directive 1 signaled the intention of returning NASA astronauts to the Moon. In 2018, NASA solicited bids from nine companies, including Firefly Aerospace, for the Commercial Lunar Payload Services (CLPS) program. CLPS is part of the NASA Artemis program; one of the long-term goals of Artemis is establishing a permanent crewed base on the Moon. [17]

In 2021, Firefly Aerospace received a NASA contract that was valued at US$93 million to conduct lunar landings for NASA. [18]

See also

Other commercial lunar lander programs
Lunar lander programs by country

Related Research Articles

<span class="mw-page-title-main">Blue Origin</span> American aerospace company

Blue Origin Enterprises, L.P. is an American space technology company headquartered in Kent, Washington. The company operates the suborbital New Shepard rocket and is developing the heavy-lift New Glenn rocket. In addition to producing engines for its own rockets, Blue Origin supplies engines for other vehicles, including United Launch Alliance's Vulcan Centaur. It is also working on the Blue Moon human lunar lander for NASA's Artemis program, the Blue Ring spacecraft platform, and the Orbital Reef space station in partnership with other organizations.

<span class="mw-page-title-main">Lunar lander</span> Spacecraft intended to land on the surface of the Moon

A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2024, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.

<span class="mw-page-title-main">Masten Space Systems</span> Defunct American aerospace company

Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.

<span class="mw-page-title-main">Astrobotic Technology</span> American space robotics company

Astrobotic Technology, Inc., commonly referred to as Astrobotic, is an American private company that is developing space robotics technology for lunar and planetary missions. It was founded in 2007 by Carnegie Mellon professor Red Whittaker and his associates with the goal of winning the Google Lunar X Prize. The company is based in Pittsburgh, Pennsylvania. Their first launch occurred on January 8, 2024, as part of NASA's Commercial Lunar Payload Services (CLPS) program. The launch carried the company's Peregrine lunar lander on board the first flight of the Vulcan Centaur rocket from Florida's Space Force Station LC-41. The mission was unable to reach the Moon for a soft or hard landing. On June 11, 2020, Astrobotic received a second contract for the CLPS program. NASA would pay Astrobotic US$199.5 million to take the VIPER rover to the Moon, targeting a landing in November 2024. In July 2024, NASA announced that VIPER had been cancelled.

The (Japanese) Lunar Exploration Program is a program of robotic and human missions to the Moon undertaken by the Japanese Aerospace Exploration Agency (JAXA) and its division, the Institute of Space and Astronautical Science (ISAS). It is also one of the three major enterprises of the JAXA Space Exploration Center (JSPEC). The main goal of the program is "to elucidate the origin and evolution of the Moon and utilize the Moon in the future".

Firefly Aerospace is an American private aerospace firm based in Cedar Park, Texas, that develops small and medium launch vehicles for commercial launches to orbit. The current company was formed when the assets of the former company Firefly Space Systems were acquired by EOS Launcher in March 2017, which was then renamed Firefly Aerospace. Firefly's stated purpose is to increase access to space, similar to other private spaceflight companies.

<span class="mw-page-title-main">Artemis III</span> Third orbital flight of the Artemis program

Artemis III is planned to be the first crewed Moon landing mission of the Artemis program and the first crewed flight of the Starship HLS lander. Artemis III is planned to be the second crewed Artemis mission and the first American crewed lunar landing since Apollo 17 in December 1972. As of December 2024, NASA officially expects Artemis III to launch no earlier than mid-2027 due to heat shield issues on Orion and valve problems in the spacecraft's life support system.

<span class="mw-page-title-main">Blue Moon (spacecraft)</span> Lunar lander family developed by Blue Origin for the Artemis program

Blue Moon is a family of lunar landers and their associated infrastructure, intended to carry humans and cargo to the Moon, under development by a consortium led by Blue Origin and including Lockheed Martin, Draper, Boeing, Astrobotic, and Honeybee Robotics. Two versions of Blue Moon are under development: a robotic lander planned to land on the Moon in 2024, and a larger human lander planned to land a crew of four astronauts on the lunar surface for the NASA Artemis V mission in 2029.

<span class="mw-page-title-main">Resource Prospector</span>

Resource Prospector is a cancelled mission concept by NASA of a rover that would have performed a survey expedition on a polar region of the Moon. The rover was to attempt to detect and map the location of volatiles such as hydrogen, oxygen and lunar water which could foster more affordable and sustainable human exploration to the Moon, Mars, and other Solar System bodies.

<span class="mw-page-title-main">2024 in spaceflight</span>

For the fourth year in a row, new world records were set for both orbital launch attempts and successful orbital launches. The year featured successful maiden launches of Vulcan Centaur, Gravity-1, Long March 12, Ariane 6, and notably more developmental launches of SpaceX's Starship, including the first ever landing on Flight 5. Additionally, the final launch of a Delta family rocket occurred in April with a Delta IV Heavy. In May, China launched the Chang'e 6, the first sample return from the far side of the Moon. The Polaris Dawn mission conducted the first ever commercial spacewalk in September.

The International Lunar Observatory (ILO) is a private scientific and commercial lunar mission by the International Lunar Observatory Association of Kamuela, Hawaii to place a permanent observatory near the South Pole of the Moon to conduct astrophysical studies using an optical telescope and possibly an antenna dish. The mission aims to prove a conceptual design for a lunar observatory that would be reliable, low cost, and fast to implement. A precursor mission, ILO-X consisting of two small imagers, launched on 15 February 2024 aboard the Intuitive Machines IM-1 mission to the Moon south pole region. It is hoped to be a technology precursor to a future observatories on the Moon, and other commercial initiatives.

<span class="mw-page-title-main">Commercial Lunar Payload Services</span> NASA program contracting commercial transportation services to the Moon

Commercial Lunar Payload Services (CLPS) is a NASA program to hire companies to send small robotic landers and rovers to the Moon. Most landing sites are near the lunar south pole where they will scout for lunar resources, test in situ resource utilization (ISRU) concepts, and perform lunar science to support the Artemis lunar program. CLPS is intended to buy end-to-end payload services between Earth and the lunar surface using fixed-price contracts. The program achieved the first landing on the Moon by a commercial company in history with the IM-1 mission in 2024. The program was extended to add support for large payloads starting after 2025.

<span class="mw-page-title-main">OrbitBeyond</span> Lunar exploration company

Orbit Beyond, Inc., usually stylized as ORBITBeyond, is an aerospace company that builds technologies for lunar exploration. Its products include configurable delivery lunar landers with a payload capacity of up to 300 kg (660 lb), and rovers.

<span class="mw-page-title-main">Intuitive Machines Nova-C</span> Lunar lander developed by Intuitive Machines

The Intuitive Machines Nova-C, or simply Nova-C, is a class of lunar landers designed by Intuitive Machines (IM) to deliver small payloads to the surface of the Moon. Intuitive Machines was one of three service providers awarded task orders in 2019 for delivery of NASA science payloads to the Moon. The IM-1 lunar lander, named Odysseus, was launched by a SpaceX Falcon 9 rocket on 15 February 2024, reached lunar orbit on 21 February, and landed on the lunar surface on 22 February. This marked the inaugural Nova-C landing on the Moon and the first American spacecraft to perform a soft landing on the Moon in over 50 years. It is the first spacecraft to use methalox propulsion to navigate between the Earth and the Moon.

<i>Beresheet</i> Failed Israeli lunar lander

Beresheet was a demonstrator of a small robotic lunar lander and lunar probe operated by SpaceIL and Israel Aerospace Industries. Its aims included inspiring youth and promoting careers in science, technology, engineering, and mathematics (STEM), and landing its magnetometer, time capsule, and laser retroreflector on the Moon. The lander's gyroscopes failed on 11 April 2019 causing the main engine to shut off, which resulted in the lander crashing on the Moon. Its final resting position is 32.5956°N, 19.3496°E.

<span class="mw-page-title-main">Artemis program</span> NASA-led lunar exploration program

The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. It is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.

<span class="mw-page-title-main">Artemis V</span> Fifth orbital flight of the Artemis program

Artemis V is the fifth planned mission of NASA's Artemis program and the first crewed flight of the Blue Moon lander. The mission will launch four astronauts on a Space Launch System rocket and an Orion to the Lunar Gateway and will be the third lunar landing of the Artemis program. In addition, Artemis V will also deliver two new elements to the Gateway Space Station.

<span class="mw-page-title-main">Starship HLS</span> Lunar lander variant of SpaceX Starship

Starship HLS is a lunar lander variant of the Starship spacecraft that is slated to transfer astronauts from a lunar orbit to the surface of the Moon and back. It is being designed and built by SpaceX under the Human Landing System contract to NASA as a critical element of NASA's Artemis program to land a crew on the Moon.

References

  1. Aria Alamalhodaei (6 November 2023). "Firefly's Blue Ghost lander represents a big bet on a future lunar economy". TechCrunch.
  2. "Blue Ghost Mission 1 (Firefly)". NASA NSSDCA. Retrieved 13 May 2024.
  3. Stuart (18 November 2024). "To The Moon and Back: VA Tech Alumnus Prepares for Blue Ghost Mission One". The Roanoke Star. Retrieved 19 November 2024.
  4. "NASA Invites Media to Firefly Blue Ghost Mission 1 Launch to Moon - NASA" . Retrieved 26 November 2024.
  5. "Firefly Aerospace Completes Blue Ghost Lunar Lander Structure Ahead of Moon Landing for NASA". www.prnewswire.com (Press release). Retrieved 13 May 2024.
  6. "Firefly Aerospace's Blue Ghost Lunar Lander is Assembled". 16 October 2023.
  7. 1 2 "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023" (Press release). NASA. 4 February 2021. Archived from the original on 4 February 2021. Retrieved 5 March 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. Foust, Jeff (20 May 2021). "Firefly selects SpaceX to launch its lunar lander". SpaceNews. Retrieved 22 May 2021.
  9. Firefly Aerospace [@firefly_space] (20 May 2021). "Alpha rocket does not have the performance or payload volume needed to launch Blue Ghost – F9 does. Our future Beta launch vehicle will support Blue Ghost launch" (Tweet). Retrieved 20 May 2021 via Twitter.
  10. "Firefly Aerospace Completes Blue Ghost Lunar Lander Structure Ahead of Moon Landing for NASA". 4 October 2023.
  11. Parsonson, Andrew (29 April 2024). "Nammo UK Prepares to Deliver Engine for US Lunar Lander". European Spaceflight. Retrieved 4 May 2024.
  12. "One step closer to launch and landing as our Firefly team installed Blue Ghost's main engine".
  13. @Firefly_Space (30 July 2024). "We're going to the Moon! As Blue Ghost gets ready to ship for final environmental testing, get a behind-the-scenes look of how we got here and the mission ahead. Stay tuned for more on Blue Ghost Mission 1 in the coming months ahead of the Q4 2024 launch" (Tweet). Retrieved 2 October 2024 via Twitter.
  14. Foust, Jeff (26 August 2024). "Firefly Aerospace's lunar lander begins pre-launch environmental tests". SpaceNews. Retrieved 27 August 2024.
  15. "Firefly Aerospace Blue Ghost Mission 1 to the Moon Readies for Launch". Firefly Aerospace. 25 November 2024. Retrieved 30 November 2024.
  16. "Blue Ghost Mission 2". Firefly Aerospace. Retrieved 14 June 2024.
  17. "Overview of NASA's Commercial Lunar Payload Services Program". New Space Economy. 8 January 2024. Retrieved 13 May 2024.
  18. "NASA Selects Firefly Aerospace for Artemis Commercial Moon Delivery in 2023 - NASA" . Retrieved 13 May 2024.