Magnetoplasmadynamic thruster

Last updated
An MPD thruster during test firing MPD plume.jpg
An MPD thruster during test firing

A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force (the force on a charged particle by an electromagnetic field) to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or (mostly in Japan) MPD arcjet.

Contents

Generally, a gaseous material is ionized and fed into an acceleration chamber, where the magnetic and electric fields are created using a power source. The particles are then propelled by the Lorentz force resulting from the interaction between the current flowing through the plasma and the magnetic field (which is either externally applied or induced by the current) out through the exhaust chamber. Unlike chemical propulsion, there is no combustion of fuel. As with other electric propulsion variations, both specific impulse and thrust increase with power input, while thrust per watt drops.

There are two main types of MPD thrusters, applied-field and self-field. Applied-field thrusters have magnetic rings surrounding the exhaust chamber to produce the magnetic field, while self-field thrusters have a cathode extending through the middle of the chamber. Applied fields are necessary at lower power levels, where self-field configurations are too weak. Various propellants such as xenon, neon, argon, hydrogen, hydrazine, and lithium have been used, with lithium generally being the best performer. [1]

According to Edgar Choueiri magnetoplasmadynamic thrusters have input power 100–500 kilowatts, exhaust velocity 15–60 kilometers per second, thrust 2.5–25 newtons and efficiency 40–60 percent. However, additional research has shown that exhaust velocities can exceed 100 kilometers per second. [2] [3]

One potential application of magnetoplasmadynamic thrusters is the main propulsion engine for heavy cargo and piloted space vehicles (example engine for human mission to Mars). [2] [3]

Advantages

In theory, MPD thrusters could produce extremely high specific impulses (Isp) with an exhaust velocity of up to and beyond 110000 m/s, triple the value of current xenon-based ion thrusters, and about 25 times better than liquid rockets. MPD technology also has the potential for thrust levels of up to 200 newtons (N) (45 lbF), by far the highest for any form of electric propulsion, and nearly as high as many interplanetary chemical rockets. [ citation needed ] This would allow use of electric propulsion on missions which require quick delta-v maneuvers (such as capturing into orbit around another planet), but with many times greater fuel efficiency. [4]

Development

CGI rendering of Princeton University's lithium-fed self-field MPD thruster (from Popular Mechanics magazine) Self-field MPD thruster-CGI illustration.jpeg
CGI rendering of Princeton University's lithium-fed self-field MPD thruster (from Popular Mechanics magazine)

MPD thruster technology has been explored academically, but commercial interest has been low due to several remaining problems. One small problem is that power requirements on the order of hundreds of kilowatts are required for optimum performance. Current interplanetary spacecraft power systems (such as radioisotope thermoelectric generators and solar arrays) are incapable of producing that much power. NASA's Project Prometheus reactor was expected to generate power in the hundreds of kilowatts range but was discontinued in 2005.

A project to produce a space-going nuclear reactor designed to generate 600 kilowatts of electrical power began in 1963 and ran for most of the 1960s in the USSR. It was to power a communication satellite which was in the end not approved. [5] Nuclear reactors supplying kilowatts of electrical power (of the order of ten times more than current RTG power supplies) have been orbited by the USSR: RORSAT; [6] and TOPAZ. [7]

Plans to develop a megawatt-scale nuclear reactor for the use aboard a crewed spaceship were announced in 2009 by Russian nuclear Kurchatov Institute, [8] national space agency Roskosmos, [9] and confirmed by Russian President Dmitry Medvedev in his November 2009 address to the Federal Assembly. [10]

Another plan, proposed by Bradley C. Edwards, is to beam power from the ground. This plan utilizes 5 200 kW free electron lasers at 0.84 micrometres with adaptive optics on the ground to beam power to the MPD-powered spacecraft, where it is converted to electricity by GaAs photovoltaic panels. The tuning of the laser wavelength of 0.840 micrometres (1.48 eV per photon) and the photovoltaic panel bandgap of 1.43 eV to each other produces an estimated conversion efficiency of 59% and a predicted power density of up to 540 kW/m2. This would be sufficient to power a MPD upper stage, perhaps to lift satellites from LEO to GEO. [11]

Another problem with MPD technology has been the degradation of cathodes due to evaporation driven by high current densities (in excess of 100 A/cm2). The use of lithium and barium propellant mixtures and multi-channel hollow cathodes has been shown in the laboratory to be a promising solution for the cathode erosion problem. [12]

Research

Research on MPD thrusters has been carried out in the US, the former Soviet Union, Japan, Germany, and Italy. Experimental prototypes were first flown on Soviet spacecraft and, most recently, in 1996, on the Japanese Space Flyer Unit, which demonstrated the successful operation of a quasi-steady pulsed MPD thruster in space. Research at Moscow Aviation Institute, RKK Energiya, National Aerospace University, Kharkiv Aviation Institute, Institute of Space Systems of the University of Stuttgart, ISAS, Centrospazio, Alta S.p.A., Osaka University, University of Southern California, Princeton University's Electric Propulsion and Plasma Dynamics Lab (EPPDyL) (where MPD thruster research has continued uninterrupted since 1967), and NASA centers (Jet Propulsion Laboratory and Glenn Research Center), has resolved many problems related to the performance, stability and lifetime of MPD thrusters.

An MPD thruster was tested on board the Japanese Space Flyer Unit as part of EPEX (Electric Propulsion Experiment) that was launched March 18, 1995 and retrieved by space shuttle mission STS-72 January 20, 1996. To date, it is the only operational MPD thruster to have flown in space as a propulsion system. Experimental prototypes were first flown on Soviet spacecraft.

The applied-field MPD thruster in development at the Institute of Space Systems of the University of Stuttgart reached a thruster efficiency of 61.99% in 2019, corresponding to a specific impulse of Isp = 4665 s and 2.75 N of thrust. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Hall-effect thruster</span> Type of electric propulsion system

In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters are sometimes referred to as Hall thrusters or Hall-current thrusters. Hall-effect thrusters use a magnetic field to limit the electrons' axial motion and then use them to ionize propellant, efficiently accelerate the ions to produce thrust, and neutralize the ions in the plume. The Hall-effect thruster is classed as a moderate specific impulse space propulsion technology and has benefited from considerable theoretical and experimental research since the 1960s.

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.

A pulsed plasma thruster (PPT), also known as a plasma jet engine, is a form of electric spacecraft propulsion. PPTs are generally considered the simplest form of electric spacecraft propulsion and were the first form of electric propulsion to be flown in space, having flown on two Soviet probes starting in 1964. PPTs are generally flown on spacecraft with a surplus of electricity from abundantly available solar energy.

Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters and light sails, whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines.

<span class="mw-page-title-main">Fusion rocket</span> Rocket driven by nuclear fusion power

A fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond current capabilities, and much larger and more complex rockets.

<span class="mw-page-title-main">Pulsed inductive thruster</span>

A pulsed inductive thruster (PIT) is a form of ion thruster, used in spacecraft propulsion. It is a plasma propulsion engine using perpendicular electric and magnetic fields to accelerate a propellant with no electrode.

<span class="mw-page-title-main">Variable Specific Impulse Magnetoplasma Rocket</span> Electrothermal thruster in development

The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic field to confine and accelerate the expanding plasma, generating thrust. It is a plasma propulsion engine, one of several types of spacecraft electric propulsion systems.

<span class="mw-page-title-main">Magnetohydrodynamic drive</span> Vehicle propulsion using electromagnetic fields

A magnetohydrodynamic drive or MHD accelerator is a method for propelling vehicles using only electric and magnetic fields with no moving parts, accelerating an electrically conductive propellant with magnetohydrodynamics. The fluid is directed to the rear and as a reaction, the vehicle accelerates forward.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Laser propulsion</span> Form of beam-powered propulsion

Laser propulsion is a form of beam-powered propulsion where the energy source is a remote laser system and separate from the reaction mass. This form of propulsion differs from a conventional chemical rocket where both energy and reaction mass come from the solid or liquid propellants carried on board the vehicle.

<span class="mw-page-title-main">Solar electric propulsion</span> High efficiency engine for space travel

Solar electric propulsion (SEP) refers to the combination of solar cells and electric thrusters to propel a spacecraft through outer space. This technology has been exploited in a variety of spacecraft designs by the European Space Agency (ESA), the JAXA, Indian Space Research Organisation (ISRO) and NASA. SEP has a significantly higher specific impulse than chemical rocket propulsion, thus requiring less propellant mass to be launched with a spacecraft. The technology has been evaluated for missions to Mars.

<span class="mw-page-title-main">Gridded ion thruster</span> Space propulsion system

The gridded ion thruster is a common design for ion thrusters, a highly efficient low-thrust spacecraft propulsion method running on electrical power by using high-voltage grid electrodes to accelerate ions with electrostatic forces.

This is an alphabetical list of articles pertaining specifically to aerospace engineering. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

The helicon double-layer thruster is a prototype spacecraft propulsion engine. It was created by Australian scientist Christine Charles, based on a technology invented by Professor Rod Boswell, both of the Australian National University.

The electrodeless plasma thruster is a spacecraft propulsion engine commercialized under the acronym "E-IMPAcT" for "Electrodeless-Ionization Magnetized Ponderomotive Acceleration Thruster". It was created by Gregory Emsellem, based on technology developed by French Atomic Energy Commission scientist Dr Richard Geller and Dr. Terenzio Consoli, for high speed plasma beam production.

<span class="mw-page-title-main">Plasma propulsion engine</span> Type of electric propulsion

A plasma propulsion engine is a type of electric propulsion that generates thrust from a quasi-neutral plasma. This is in contrast with ion thruster engines, which generate thrust through extracting an ion current from the plasma source, which is then accelerated to high velocities using grids/anodes. These exist in many forms. However, in the scientific literature, the term "plasma thruster" sometimes encompasses thrusters usually designated as "ion engines".

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">Nuclear power in space</span> Space exploration using nuclear energy

Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown. A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.

<span class="mw-page-title-main">Direct Fusion Drive</span> Conceptual rocket engine

Direct Fusion Drive (DFD) is a conceptual, low radioactivity, nuclear-fusion rocket engine, designed to produce both thrust and electric power for interplanetary spacecraft. The concept is based on the Princeton field-reversed configuration reactor, invented in 2002 by Samuel A. Cohen, and is being modeled and experimentally tested at Princeton Plasma Physics Laboratory, a U.S. Department of Energy facility. It is also modeled and evaluated by Princeton Satellite Systems. As of 2018, the concept entered Phase II, a simulation phase.

References

  1. "PROPELLANTS". history.nasa.gov. Retrieved 2022-11-05.
  2. 1 2 "Choueiri, Edgar Y. (2009). New dawn of electric rocket. Next-Generation Thruster". Archived from the original on 2016-10-18. Retrieved 2016-10-18.
  3. 1 2 Choueiri, Edgar Y. (2009) New dawn of electric rocket Scientific American 300, 58–65 doi : 10.1038/scientificamerican0209-58
  4. Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights, June 2009, (in Russian
  5. Global Communications Satellite Using Nuclear Power Archived 2008-07-09 at the Wayback Machine
  6. "The USSR/Russia – RORSAT, Topaz, And RTG".
  7. "TOPAZ".
  8. Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights, June 2009, (in Russian)
  9. Roskosmos prepared a project of a crewed spaceship with a nuclear engine, RIAN, October 2009, (in Russian)
  10. "Developments in the nuclear field will be actively applied ... also for creating propellant devices capable of ensuring space flights even to other planets", from the November 2009 Address to the Federal Assembly [ permanent dead link ].
  11. Edwards, Bradley C. Westling, Eric A. The Space Elevator: A revolutionary Earth-to-space transportation system. 2002, 2003 BC Edwards, Houston, TX.
  12. Sankaran, K.; Cassady, L.; Kodys, A.D.; Choueiri, E.Y. (2015). "A Survey of Propulsion Options for Cargo and Piloted Missions to Mars". Annals of the New York Academy of Sciences. 1017 (1): 450–467. doi:10.1196/annals.1311.027. PMID   15220162. S2CID   1405279.
  13. Boxberger, Adam; Behnke, Alexander; Herdrich, Georg (2019). "Current Advances in Optimization of Operative Regimes of Steady State Applied Field MPD Thrusters" (PDF). International Electric Propulsion Conference (IEPC). IEPC-2019-585. Archived (PDF) from the original on 2022-10-09.